

# Selecting the Right Model

Josh Hollon & Brinton Swift



# Importance of Model Selection

- Project Management
  - Appropriate use of available budget
  - Schedule management
- Data Needs
  - o Input
  - Output
- Risks
  - Hydraulics represent huge risks
  - Lack of detail may not identify risks
  - o Simplifications can overestimate risk
  - Wrong analysis can be more costly





## Importance of Model Selection

- Finding the right tool
  - Leverage the tools capabilities
  - o Proprietary vs Open Source
  - Future Users
- Available Programs
  - Not an endorsement or recommendation
- Comments/Improvements
  - o Email us

#### **Available Programs**











- » FlowMaster
- » Hydraulic Toolbox
- CULVERT
- » HY-8 » CulvertMaster
- » UD-Culvert
- » HEC-RAS
- » MIKE 11
  - » XPSWMM » SWMM 5

- » HEC-RAS » MIKE 11
- » XPSWMM
- » SWMM 5
- » TUFLOW

#### **1D UNSTEADY 2D UNSTEADY**

- » HEC-RAS
- » SRH-2D
- » MIKE 21 » TUFLOW
- » XPSWMM
- » RiverFlow2D
- » TrimR2D
- » MIKE FLOOD
- » SWMM 5

#### **Contacts**



Josh Hollon, PE, CFM



Brinton Swift, PE, CFM





# **Normal Depth**

- Irregular Geometry
- Unsteady Flow
- Hydraulic losses
- Backwater Impacts
- Structures
- Spatially varied H&H
- Spatial flow change







- Irrigation channels Roadside ditches
- Curb & gutters Gutter pans Sidewalk chases









### **Culvert**

- Multiple, non-uniform openings
- Disconnected culverts
- Unsteady Flow
- Unknown downstream WSEL
- Need more than simple upstream/downstream hydraulic result







- Single Barrel Multiple Barrel Standard culvert shape Simplistic Overtopping





- Simple InputSimple Output

# **1D Steady State**

- Natural or constructed flood storage
- Unsteady flow
- Diverging flow paths
- Varied WSEL at bridges/culverts
- Flow redirection
- Rapidly varied flow
- Need for sediment transport results







- Channels with varying vegetation/roughness Multiple channel reaches
- Bridges
- Culverts
- Parallel Floodplains





# Wide range of applications

- Bridge analysis
- Scour analysis
- Channel design
- FEMA Permitting
- Simple prismatic channels
- Complex channel section geometry



# 1D Unsteady State

- Braided Streams
- Diverging flow paths
- Varied WSE at bridges/culverts
- Highly skewed bridges







# Flood routing (Volume!)

- Floodplain storage
- Looped hydrograph
- Split flow timingStorm durations
- Sediment transport
- Tides or Reservoir operations







# More complex analysis

- Hydrographs
- Computational stability
- Model run times

## More output data

- **Animated WSE**
- **Durations of flow**
- Volumes of flow
- More experience needed

|   |                                | 21 | NEMDC        | Upper_Reach  | 6.366 IS        | Elev Controlled Gates |
|---|--------------------------------|----|--------------|--------------|-----------------|-----------------------|
|   |                                | 22 | PUT          | R1           | 9.922           | Flow Hydrograph       |
|   |                                | 23 | Robla_Creek  | Lower_Reach  | 0.142           | Flow Hydrograph       |
|   |                                | 24 | SAB_18020109 | R1           | 2.990           | Flow Hydrograph       |
|   |                                | פר | CAC          | NCC to NEMDC | 62 702 IC       | Flou Controlled Cates |
| Г |                                |    |              |              |                 |                       |
| ı |                                |    |              |              |                 |                       |
|   | Task                           |    |              |              | Time            |                       |
| ı | Writing Geometry               |    |              |              | 23.03 sec       |                       |
| ı | Writing Event Conditions       |    |              |              | 0.16 sec        |                       |
| ı | Preprocessing Geometry(64)     |    |              |              | 1 min 3.3       | 30 sec                |
| ı | Unsteady Flow Computations(64) |    |              |              | 1 hours :       | 19 min 27 sec         |
|   | Writing to DSS(64)             |    |              |              | 3 min 30.91 sec |                       |

R1SAC-MOK

Subreach 1

R1 abv YOL

Main Branch

0.037

7.13

4.761

16 min 55.88 sec

0.31 sec

Stage Hydrograph

Flow Hydrograph

Flow Hydrograph

Flow Hydrograph

Flow Hydrograph

1 hours 41 min 21 sec Complete Process

Georgiana (GEO)

18 Lindsey Sl (LIN)

Post-Processing (64)

Computing Maps

### **2D**

- Vertical velocity distribution
- Complex hydraulic losses
- Vertical sediment profiles
- Need dynamic hydraulic loads on structures











# Split flow paths

- Bridges
- Braided systems
- Complex floodplains
  Non-uniform WSE
- Highly skewed bridges Floodplain storage





- More spatial detail
  - More terrain data
- Great for visualizations
- Easy to understand
  Informative for 1D models
- Requires experience

















## **Questions**

- Josh Hollon, 303.323.9853
  <u>Josh.Hollon@HDRInc.com</u>
- Brinton Swift, 303.318.6312
  Brinton.Swift@HDRInc.com





#### **Colorado Stormwater**

Providing stormwater analysis, planning and design for diverse Colorado watersheds

**FDS** 



