Evolution of the Colorado Urban Hydrograph Procedure (CUHP)

Ben Urbonas, P.E., D.WRE

History of Colorado Unit Hydrograph Procedure

- 1969 Wright Water Engineers developed the original hand calculating procedure published in the Urban Storm Drainage Criteria Manual.
- 1972 First computer version written by Ben Urbonas & Stewart McGuire, URS/Ken R. White Co. This was the first version of the one used today.
 - Biggest challenge was to develop a numerical procedures to shape the unit hydrograph.)

Unit Hydrograph

- 1. Defined as runoff hydrograph shape from 1-inch of runoff that occurs uniformly over unit of time
- 2. Tributary area shape and characteristics determine the hydrograph shape

Possible Catchment Shape

1968 CUHP Basic Equations in the USDCM

$$t_p = C_t (LL_{ca})^{0.3}$$

 t_p = time to peak of the unit hydrograph from midpoint of unit rainfall in hours

L = length along runoff flow path to upstream limits of the catchment, in miles

L_{ca} = length along runoff flow path to a point adjacent to the centroid of the catchment, in miles

C_t = coefficient <u>reflecting time to peak</u>

$$q_p = \frac{640 C_p}{t_p}$$

 q_p = unit peak rate of runoff, in cfs per square mile

 C_p = coefficient related to peak rate of runoff

Guidance for selection of $C_{\underline{t}}$ and $C_{\underline{p}}$ coefficients was limited and required much user judgment. It was based on 1 to 3 runoff events in Harvard Gulch.

History of Colorado Unit Hydrograph Procedure

- 1977 UDFCD adopts mainframe version of CUHP
 - Program modified for UDFCD use by Gary Walkovitz, URS Company
 - Also, modified to permit (by Ben Urbonas):
 - a. Use of Horton's Equation for infiltration rates,
 - b. Vary infiltration rates by storm event,
 - c. Overriding of default unit hydrograph shape,
 - d. Generation output to file for interface with HEC FFA.

History of Colorado Unit Hydrograph Procedure

1979 - Major update and revision

- Based on UDFCD/USGS rainfall/runoff data analysis
- Calibrated to data for areas > 90 and < 2000 acres

CUHP was calibrated and revised using rainfall/runoff data:

- * 8 different urban catchment conditions
- * periods of data record ranged from 10 to 12 years

1979 CUHP Revision Approach

- In 2969 UDFCD contracted with USGS to collect paired Rainfall Runoff Data at 29 urban catchments of various characteristics
- In 1978 began to analyze paired Rainfall/Runoff data
 - Test data for errors and integrity (started with 29 catchments)
 - Cross-plot runoff volume vs. rainfall volume
 - Discard catchments that showed clear errors (only 8 remained) (e.g., runoff volume greater than rainfall volume)
- Process data through HEC-1 to develop unit hydrograph for each storm
 - Find average unit hydrograph for each catchment
 - Take off values for unit peak runoff, time to peak, W50%, W75%
- Search for relationships between Catchment parameters and above values
- Seek to relate UH parameters to Catchment parameters

Finding the New C_t

1979 Version CUHP Basic Equation that Changed

$$t_p = C_t \left(\frac{LL_{ca}}{\sqrt{S}}\right)^{0.48}$$

 t_p = time to peak of the unit hydrograph from midpoint of unit rainfall, in hours

- L = length along runoff flow path to upstream limits of the catchment, in miles
- L_{ca} = length along runoff flow path to a point adjacent to the centroid of the catchment, in miles
- C_t = coefficient <u>reflecting time to peak</u>

S = weighted average slope of catchment along flow path, in feet per foot

 q_p equation was unchanged

The 1979 update for the first time provided quantitative guidance for selecting of C_t and C_p coefficients, relating them to imperviousness and area.

Waterway Slope is Now a Part of Updated CUHP

A need to adjust steep slopes was introduced

Weighted Waterway Slope

- When the flow line slope varies along the drainageway, calculate a length-weighted:
 - 1. Segment waterway into similar reaches
 - 2. Correct the steep reach slopes using the correction coefficient in USDCM
- 3. Find weighted slope using the following equation:

$$S = \left(\frac{L_1 \cdot S_1^{0.24} + L_2 \cdot S_2^{0.24} + \dots + L_n \cdot S_n^{0.24}}{L_1 + L_2 + \dots + L_n}\right)^{4.17}$$

S = weighted catchment waterway slope in ft/ft $S_1, S_2,...,S_n$ = slopes of individual reaches in ft/ft (after adjustments for steep slopes) $L_1, L_2,...,L_n$ = lengths of corresponding reaches

1979 Version CUHP Basic Time to Peak Equations

$$T_p = 60 t_p + 0.5 t_u$$

- $T_p =$ time from beginning of unit rainfall to peak of hydrograph, in minutes
- t_u = unit rainfall duration, in minutes

$$C_p = P \cdot C_t \cdot A^{0.15}$$

- C_p = unit hydrograph peaking coefficient
- $\vec{C_t}$ = time to peak coefficient
- *P* = peaking parameter
- A = catchment area in square miles

1979 Version CUHP Basic Equations that Did Not Change Unit Peak Runoff and Peak Runoff

$$q_p = \frac{640 C_p}{t_p}$$

 q_p = unit **peak rate of runoff**, in cfs per square mile

 C_p = coefficient related to peak rate of runoff

$$Q_p = q_p A$$

 Q_p = peak of the unit hydrograph, in cfs A = area of catchment, in square miles

Unit Hydrograph New Calibrated C_t Coefficient

Unit Hydrograph New Calibrated C_p Coefficient

$$C_p = PC_t A^{0.15}$$

- P = peaking parameter from Figure
- $C_t = \text{coefficient}$
- A = catchment area, in square miles

Unit Hydrograph Calibrated UH widths at 50 & 75% of Q_p Did not Change

Unit Hydrograph Points that define UH shape and shaping it.

1979 Calibrated CUHP Recorded vs. Calculated Peak Flows

Now that we have a calibrated Unit Hydrograph, let's CALIBRATE DESIGN STORMS

<u>Goal</u>: Match peak/volume return period of design storm to that of storm hydrograph.

1979 Comparison of 30 minute Depths 73 years of Data, NOAA Atlas, UDFCD Manual

Note: Practically no patter relating rainfall to antecedent precipitation

Original Pre-1979 Design Storm Procedure

- 1. User picked off 5-minute through 2-hour rainfall depths from isopluvial maps in USDCM
- 2. Plot a depth-duration curve
- 3. Segregated the values into 5-minute depths
- Rearrange the 5-minute incremental depths into a "logical" temporal arrangement by placing the highest depth increment at 30 or 35 minutes from start of storm (depending on return period).

UDFCD Design Storm Analysis for 1979 Update

- 1. Calibrated CUHP model using recorded simultaneous rainfall/runoff data for a variety of land uses using the catchments used in developing updated CUHP
- 2. Used the calibrated CUHP to process three larges storms with 5-minute data for each of the 73 years of historical rainfall data
- 3. Picked off the largest 73 runoff peaks and volumes
- 4. Performed Log-Pearson Type III frequency analysis
- 5. Results became the basis for comparing peaks and
 - volumes between existing and new design storms

Post 1979 UDFCD Design Storms

- 1. Developed using 73 years of rainfall to model runoff peaks using calibrated unit hydrograph model
- 2. <u>2-hour duration</u> <u>front-loaded</u> <u>design storm pattern</u> was selected after studying 73 years of storm patterns
 - <u>3- and 6-hour</u> duration storms were also developed for use with <u>large catchments</u>
- 3. <u>Design storm distributions</u> were <u>adjusted</u> to <u>produce runoff peaks</u> that best <u>match runoff peaks</u> <u>at all return periods</u>

Redesigned Design Storm Peaks vs. Runoff Peak Statistics (250 ac & 40% Imp.)

Redesigned Design Storm Peaks vs. Runoff Peak Statistics (90 ac & 97% Imp.)

History of Colorado Unit Hydrograph Procedure

- **1984 -** Program converted to run of PCs by Young S. Yoon and Niem-Sheng Hsu, Boyle Engineering Corporation to:
 - Write storm hydrograph file for use with UDSWM2-PC,
 - Permit an estimate of hydrographs for small drainage areas using time of concentration to compare results of Rational Method.

History of Colorado Unit Hydrograph Procedure

- 2005 Excel user interface developed by John-Michael O'Brien, UDFCD intern and John O'Brien, Wright Water Engineers to execute the C-language version of the software and to interface with EPA SWMM 5.0 software.
 - This included the "Converter" to translate older versions of CUHP and UDSWM input to run under the rewritten CUHP and EPA's SWMM 5.0.

2005 Model Conceptual Relationships for Directly Connected Imperviousness

Runoff Areas:

DCIA = directly (hydraulically) connected impervious

UIA = unconnected impervious

RPA = receiving pervious

SPA = separate pervious

CUHP Runoff Calculations

CUHP calculates excess precipitation for each unit time step (e.g., 5-minute steps)

- 1. First calculated runoff from impervious areas
- 2. Splits by connected/unconnected ratios
- 3. Adds connected impervious portion to total runoff
- Transfers unconnected runoff to the receiving pervious area and adds runoff depth to rainfall depth. Calculates runoff form receiving pervious area.
 - Adds to total runoff
- Calculates runoff from separate pervious area and adds to total runoff

CUHP Produces Storm Runoff Hydrograph

Steps to generate runoff hydrograph

- 1. Develop Unit Hydrograph based on:
 - Catchment area, shape, slope, imperviousness
- 2. Convert design rainfall into runoff for each time increment based on:
 - Imperviousness, soil/groundcover type, connected/unconnected character of catchment
- 3. Multiply unit hydrograph by runoff at each time increment of runoff
- 4. Sum all the resultant mini storm hydrographs to obtain design hydrograph

Convolution of Unit Hydrograph, Runoff Hyetograph into Storm Hydrograph

Finding the Storm Hydrograph:

Cross-multiply excess precipitation at each time step by ordinates of the Unit Hydrograph

Time min.	Unit Graph cfs		Excess Rainfall Depth In Inch															Hydrograph cfs						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
1		0.04	0.09	0.31	0.15	0.06	0.05	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.6.0.0023
5	115	4.6	25.953	22	1645.0	Color.	1000	1032	2.2	198.20		3335	194	12.1	145 A.C	265.	2.223	1.1	121	P. 24	Sec. 1	23.24	1000	4.6
10	345	13.8	10.4	19 35	120	C. T. M.	Parts.	3	100	22	1	263	2.00		200	s inte	100	1. 2		2100		63.50	. B	24.2
15	520	20.8	31.1	35.7	6400	182.61	6.92	5000	2,025	1837	87.Q.S.	5.825.	929.3	1995	1000	2.2.2	1000	10.0	0.000	102/18	12.50	20220	0.00	87.6
20	463	18.5	46.8	107.0	17.3	18:36	1000	S. S.	1000		100	A Back	Come and	13164		100	Sec.	1.20	20.03		5	Perce	16250	189.6
25	350	14.0	41.7	161.2	51.8	6.9		200	12.04			ALSO NO	1.25	200		19352			8,55,57	02210	535 ZF	68. N. P		275.6
30	260	10.4	31.5	143.5	78.0	20.7	5.8	15266	MALLER R		1.33		1523-64	MAR.		1.35	10.55	52567	24.8%		1.35	0.9	2.6%	289.9
35	210	8.4	23.4	108.5	69.5	31.2	17.3	3.5			1526-3	- Berth	100		10.25	282.4	12 day		322	1991	2		20.23	261.8
40	168	6.7	18.9	80.6	52.5	27.8	26.0	10.4	3.5	1000	< 1 × 1	33.10	12013	199		<0.5	100	2013	100	2.000		Sec.	1942	226.4
45	138	5.5	15.1	65.1	39.0	21.0	23.2	15.6	10.4	3.5	3.80	10.0	dal.	Sec. 15	100.00	300	10.00	Sal.	1	A. A.	3	10.82	242.2	198.4
50	110	4.4	12.4	52.1	31.5	15.6	17.5	13.9	15.6	10.4	3.5	200	31434	52,75	100	63323	1.04	1488	1270		22.22	1182	Ne86S	176.9
55	88	3.5	9.9	42.8	25.2	12.6	13.0	10.5	13.9	15.6	10.4	3.5	1853	1.355	4233		235	1597	6333	12.13		2331	3.3	160.9
60	70	2.8	7.9	34.1	20.7	10.1	10.5	7.8	10.5	13.9	15.6	10.4	3.5	18.25	12,7153	1211	100	Sach	18.3	0. A 192	1	553	SAUCES	147.8
65	55	2.2	6.3	27.3	16.5	8.3	8.4	6.3	7.8	10.5	13.9	15.6	10.4	3.5		1 35	2003	2.20	CORT.		7357	202	22.8	137.0
70	40	1.6	5.0	21.7	13.2	6.6	6.9	5.0	6.3	7.8	10.5	13.9	15.6	10.4	2.3	200	2.2.4	1.1.2	Secul	2 Common		22.9	199	126.8
75	30	1.2	3.6	17.1	10.5	5.3	5.5	4.1	5.0	6.3	7.8	10.5	13.9	15.6	6.9	1.2	12111	Sec. 1	1.5916	19243	×44.00	121210	1.4	114.5
80	20	0.8	2.7	12.4	8.3	4.2	4.4	3.3	4.1	SA	6.3	7.8	10.5	13.9	10.4	3.5	1.2	13/66	1200	232.13	AND I	12756	2016.00	93.8
85	15	0.6	1.8	9.3	6.0	3.3	3.5	2.6	3.3	4.1	5.0	6.3	7.8	10.5	9.3	5.2	3.5	1.2	200	1.16	Aller S	1000	22.2	83.3
90	8	0.3	1.4	6.2	4.5	2.4	2.8	2.1	2.6	3.3	4.1	5.0	6.3	7.8	7.0	4.6	5.2	3.5	1.2	12312	6.72	1.9-17	9.00	70.3
95	2	0.1	0.7	4.7	3.0	1.8	2.0	1.7	2.1	2.6	3.3	4.1	5.0	6.3	5.2	3.5	4.6	5.2	3.5	1.2		2020		60.6
100	0	0.0	0.2	2.5	2.3	1.2	1.5	1.2	1.7	2.1	2.6	3.3	4.1	5.0	4.2	2.6	3.5	4.6	5.2	3.5	1.2	1125	19.40	52.5
105			0.0	0.6	1.2	0.9	1.0	0.9	1.2	1.7	2.1	2.6	3.3	4.1	3.4	2.1	2.6	3.5	4.6	5.2	3.5	1.2	1333	45.7
110				0.0	0.3	0.5	0.8	0.6	0.9	1.2	1.7	2.1	2.6	3.3	2.8	1.7	2.1	2.6	3.5	4.6	5.2	3.5	1.2	41.2
115					0.0	0.1	0.4	0.5	0.6	0.9	1.2	1.7	2.1	2.6	22.0	1.4	1.7	2.1	2.6	3.5	4.6	5.2	3.5	56.7
120		1000	1.19	1.35	123.15	0.0	0.1	0.2	0.5	0.6	0.9	1.2	1.7	2.1	1.8	1.1	1.4	1.7	2.1	2.6	3.5	4.6	5.2	31.3
125	1.101.11	2331	0.053	Sec.	1- 11	1.1.3	0.1	0.1	0.2	0.5	0.6	0.9	1.2	1.7	1.4	0.9	1.1	1.4	1.7	2.1	2.6	3.5	4.6	24.6
130	19 march	1 1 10	1-115		124	No.	1000	0.0	0.1	0.2	0.5	0.6	0.9	1.2	1.1	0.7	0.9	1.1	1.7	1.7	2.1	2.6	3.5	18.9
135	R WALLAND	1.00		12-50	Del M.	121.94	1.161	100	0.0	0.1	0.2	0.5	0.6	0.9	0.8	0.6	0.7	0.9	1.1	1.4	1.7	2.1	2.6	14.2
140	SADA SAN	12:03	10000		2123	SET	12125	1,22,6		0.0	0.1	0.2	0.5	0.6	0.6	0.4	0.6	0.7	0.9	1.1	1.4	1.7	2.1	10.9
145	1.5.50	12/201	Perent	28.45	1.53.90	1119	A St. C.	22.65	28410	15.80	0.0	0.1	2.0	0.5	0.4	0.3	0.4	0.6	0.7	0.9	1.1	1.4	1.7	10.1
150		1		125	12/61	11.25	2.25	1.5	125 6	37.40	182	0.0	0.1	0.2	0.3	0.2	0.3	0.4	0.6	0.7	0.9	1.1	1.4	6.2
155	Sales and	22.69		3493	62.02	10.5	54957	1000	1000	10.02	10.10	SIL	0.0	0.1	0.2	0.2	0.2	0.3	0.4	0.6	0.7	0.9	1.1	4.7
160		12.00	12.28	17 20		2.5	1. A. A. A. A.	2215	1.1		N.S.Y	14	2365	0.0	0.0	0.1	0.2	0.2	0.3	0.4	0.6	0.7	0.9	3.4
165	WOR STOR		3.42	5533	UVO:S	322	2.53	1.10	5338	1025		1333	303.0	17285	0.0	0.0	0.1	0.2	0.2	0.3	0.4	0.6	0.7	2.5
170	533.57 C.6	12.00	. C. 10	2.420	2522	TR-lin	12.13	2.103	1.125	152.64	1 ling	200	1. 12.	33.9	2.47	0.0	0.0	0.1	0.2	0.2	0.3	0.4	0.6	1.8
175	7.1534 33	19.976	125	10.11	1235	122	en Wale	1980		125		1976	1986	1.81	1354	3.79	0.0	0.0	0.1	0.2	0.2	0.3	0.4	1.2
180	104 S. 40	10.00	26.24	12123	100		10.00	1122	12	(# S)		10000	1.2	2192	14.58		1.200	0.0	0.0	0.1	0.2	0.2	0.3	0.8
185	1,400,0000	to and	1.200		1.44	C.C.C.	1994 L	2550	1.00	1.40	C. T.C.L.	22.0	200	1621	111	C. Links	24.4	101	0.0	0.0	0.1	0.2	0.2	0.5
190	to Range h	1 TAN	V. ast	10.00	1.68	120	TSALA.	2005	1600	SEC.	20	TACK	100	NGN.	(fan	10 ¹¹	MAN	10.17	NG N	0.0	0.0	0.1	0.2	0.3
195	81 251 200	1.24	0-62	ALC: N	RIE	1 ent	1000	101	USSA.	STO:	Sert. 3	122	HERE'S	1993	1034	ent Ch	12.00	265.3	BRAR	125.13	0.0	0.0	0.1	0.1
200	21921020	2 and	15,223	and a	3.092	UC ATE	1 percent	822G	W. B.L.		24769	No. M.	12358	a Bur	1924	1436-7	A. S.	1250	3843	6246	635-24	0.0	0.0	0.0

QUESTIONS?