Opportunities for Coordination between Dam Safety and Floodplain Managers

CASFM Lunch and Learn
Denver, CO
October 14th, 2015

Kallie Bauer
Dam Safety Engineer
Opportunity to Improve DSE’s to CFM’s Communication

• Pre April 2013
 • Relatively unaware or unmotivated?
 • Dam safety and floodplain management rarely intersected
 • 100-yr floodplain vs PMF floods and Sunny Day failures

• Post April 2013 - FEMA CRS 630 - Dams
 • Becoming aware, motivated
 • Need information from each other

• Post September 2013 - heavy rainfall
 • Dams spilling, outlets running and some dams failing

• Post May 2015 - heavy spring rains/runoff
 • Normal Dam operation leads to flooding
 • Communication and language needed
Communication

• Dam Owners - CFMs
 • Dam outlet opened
 • Dam Spillway running

• Dam Owners - Emergency Managers
 • Dam has problems
 • Problem heads downstream

• Dam Safety in the middle
Colorado Dam Safety Branch
Dams in Colorado
Where CFM’s and DSE’s intersect

• Emergency Action Planning
• Inundation zones
• Dam releases
 • Spillway
 • Outlet
Examples

• September 2013
 • Major flooding
 • Spillways flowing
 • Dams failing

• May 2015
 • Flooding
 • Spillways running
 • Outlets opened
Spillway Flows 9/20/13
Evergreen Dam
Evergreen Dam Inundation Map

Sunny Day Failure - 90,000 cfs
Concrete Dam, Ogee-Crested Spillway
Spillway Rating Curve

2500 cfs

35,000 cfs

Evergreen Dam
Spillway Discharge Curve

2500 cfs

+/−

Spillway Crest Elevation 7277 Test

Top of Dam Elevation 7077 Test

\[A = 1574' \]

\[h_0 = 2.5' \text{ to } 4.0' \]
<table>
<thead>
<tr>
<th>Elevation</th>
<th>Surface Area (acres)</th>
<th>Storage Capacity (acre-feet)</th>
<th>Elevation</th>
<th>Spillway Capacity (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6230</td>
<td>0.0</td>
<td>0.0</td>
<td>6400</td>
<td>0</td>
</tr>
<tr>
<td>6240</td>
<td>7.9</td>
<td>27.6</td>
<td>6401</td>
<td>325</td>
</tr>
<tr>
<td>6260</td>
<td>26.8</td>
<td>368.2</td>
<td>6402</td>
<td>918</td>
</tr>
<tr>
<td>6280</td>
<td>46.6</td>
<td>1,100.8</td>
<td>6403</td>
<td>1,686</td>
</tr>
<tr>
<td>6300</td>
<td>68.2</td>
<td>2,246.4</td>
<td>6404</td>
<td>2,596</td>
</tr>
<tr>
<td>6320</td>
<td>94.4</td>
<td>3,864.3</td>
<td>6405</td>
<td>3,628</td>
</tr>
<tr>
<td>6340</td>
<td>122.0</td>
<td>6,032.8</td>
<td>6406</td>
<td>4,769</td>
</tr>
<tr>
<td>6360</td>
<td>151.8</td>
<td>8,762.6</td>
<td>6407</td>
<td>6,010</td>
</tr>
<tr>
<td>6380</td>
<td>184.0</td>
<td>12,123.4</td>
<td>6408</td>
<td>7,343</td>
</tr>
<tr>
<td>6400</td>
<td>221.8</td>
<td>16,197.2</td>
<td>6409</td>
<td>8,762</td>
</tr>
<tr>
<td>6402</td>
<td></td>
<td></td>
<td>6410</td>
<td>10,262</td>
</tr>
<tr>
<td>6404</td>
<td></td>
<td></td>
<td>6411</td>
<td>11,839</td>
</tr>
<tr>
<td>6406</td>
<td></td>
<td></td>
<td>6412</td>
<td>13,489</td>
</tr>
<tr>
<td>6408</td>
<td></td>
<td></td>
<td>6413</td>
<td>15,210</td>
</tr>
<tr>
<td>6410</td>
<td></td>
<td></td>
<td>6414</td>
<td>16,998</td>
</tr>
<tr>
<td>6412</td>
<td></td>
<td></td>
<td>6415</td>
<td>18,852</td>
</tr>
<tr>
<td>6414</td>
<td></td>
<td></td>
<td>6416</td>
<td>20,768</td>
</tr>
<tr>
<td>6416</td>
<td></td>
<td></td>
<td>6417</td>
<td>22,745</td>
</tr>
<tr>
<td>6418</td>
<td></td>
<td></td>
<td>6418</td>
<td>24,781</td>
</tr>
<tr>
<td>6420</td>
<td></td>
<td></td>
<td>6419</td>
<td>26,875</td>
</tr>
<tr>
<td>6422</td>
<td></td>
<td></td>
<td>6420</td>
<td>29,024</td>
</tr>
<tr>
<td>6424</td>
<td></td>
<td></td>
<td>6420.1</td>
<td>29,255</td>
</tr>
<tr>
<td>6426</td>
<td></td>
<td></td>
<td>6420.2</td>
<td>29,498</td>
</tr>
<tr>
<td>6428</td>
<td></td>
<td></td>
<td>6420.3</td>
<td>29,749</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6420.4</td>
<td>30,005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6420.5</td>
<td>30,258</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6420.6</td>
<td>30,535</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6420.7</td>
<td>30,807</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6420.8</td>
<td>31,083</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6420.9</td>
<td>31,364</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6421.0</td>
<td>31,648</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6421.1</td>
<td>31,936</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6421.2</td>
<td>32,227</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6421.3</td>
<td>32,522</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6421.4</td>
<td>32,820</td>
</tr>
</tbody>
</table>

Observed high water mark on the spillway.
2015 Spillway vs 100 yr flows

Fossil Creek Reservoir Natural Area
Fossil Creek Dam

- 100 yr flow at CR 27 Poudre River = 9,600 cfs
- PMF = 80,000 cfs, spillway flows
- Outlet released 270 cfs
Fossil Creek Inundation

South County Road 5
Peak Discharge = 96,719 cfs
Volume of Flood Wave = 13,899 ac-ft
Time of Peak Flood Wave = 0.17 hours

Interstate 25
Peak Discharge = 116,780 cfs
Volume of Flood Wave = 14,907 ac-ft
Time of Peak Flood Wave = 0.01 hours
2015 Spillway Flow
North Sterling Reservoir
Spillway Running
Outlet Releases - EAP Activation
Eleven Mile Canyon Dam
Outlet channel

Spillway channel
Eleven Mile Inundation Map

Access Road Tunnels
2.0 Miles Downstream of Eleven Mile Canyon Dam
Maximum Flow Rate (cfs) = 838,745
Maximum Water Surface Elevation (ft) = 8,410
Maximum Stage (ft) = 53
Wave Arrival Time (hr:min) = 0:18
Time to Peak Flood Stage (hr:min) = 2:50

Cove Campground
1.2 Miles Downstream of Eleven Mile Canyon Dam
Maximum Flow Rate (cfs) = 839,724
Maximum Water Surface Elevation (ft) = 8,479
Maximum Stage (ft) = 59
Wave Arrival Time (hr:min) = 0:15
Time to Peak Flood Stage (hr:min) = 2:50

Reservoir Campground
0.5 Miles Downstream of Eleven Mile Canyon Dam
Maximum Flow Rate (cfs) = 840,952
Maximum Water Surface Elevation (ft) = 8,528
Maximum Stage (ft) = 45
Wave Arrival Time (hr:min) = 0:15
Time to Peak Flood Stage (hr:min) = 2:50

Eleven Mile Canyon Dam
0.1 Miles Downstream of Eleven Mile Canyon Dam
Maximum Flow Rate (cfs) = 844,178
Maximum Water Surface Elevation (ft) = 8,539
Maximum Stage (ft) = 54
Wave Arrival Time (hr:min) = 0:12
Time to Peak Flood Stage (hr:min) = 2:45

Notes: The base map is the latest USGS Quadrangle maps as of January 2007 and the StreetMap USA database from ESRI, Redlands, CA, Aerial Photography is from the USGS/SCS Douglas, Jefferson and Teller County is dated November of 2005 and Pard County is dated February of 2007.

The flood inundation information shown is based on a computer simulated failure.
Completed Dam Crest El. 9031
Shaft Spillway Crest El. 9017
Discharge 4350 C.F.S.

Diversion Dam Crest El. 8896
Diversion Dam - Spillway Crest El. 8886 with flashboards;
Discharge 2850 C.F.S.

Intake Sill El. 8829
High Pressure Gates El. 8788.33

DISCHARGE CURVE - OUTLET WORKS
2 - 4'-0" x 5'-0" HIGH PRESSURE GATES
1 - 2'-3" x 2'-3" HIGH PRESSURE GATE
SPILLWAY DISCHARGE CURVE-COMPLETED DAM

56-FOOT DIAMETER SHAFT SPILLWAY
Flooding - Summary

- Can be caused by
 - Spillway flows
 - Outlet Releases
 - Combination of the 2

- The Dam can be fine
Next Steps

• Collaborative Efforts Needed
• Communication
• Know your dams
• Dam Failure vs Spillway Operation
• Outlet Operations that cause flooding
• Communication
• Know who to call
Questions?