

UD-Detention Workbook CASFM Lunch and Learn February 3, 2016

- 1. Detailed discussion on FSD (Took out everything else)
- 2. Took out FAA Procedure.
- **3**. Added guidance for incorporating FSD within different WQ BMPs.

Chapter 12, Storage

Full Spectrum Detention

EURV. Equations 12-1, 2 and 3 may be used to find EURV in watershed inches for specific soil types.

$EURV_{A} = 1.68i^{1.28}$	Equation 12-1
$EURV_{B} = 1.36i^{1.08}$	Equation 12-2
$EURV_{C/D} = 1.20i^{1.08}$	Equation 12-3

Where:

 $EURV_{K}$ = Excess urban runoff volume in watershed inches (*K* indicates NRCS soils type), *i* = Imperviousness ratio (a decimal less than or equal to 1)

New EURV Equations

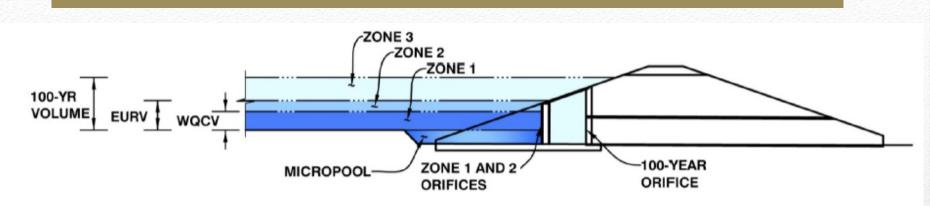


Figure 12-6. Extended detention basin combined with full spectrum detention

		•	
Zone	Volume	Drain Time of Zone, hrs	Maximum Release Rate
1	40-hr WQCV	40	Based on drain time
2	EURV minus (40-hr WQCV))	$12 \text{ to } 32^1$	Based on drain time
3	100-yr minus EURV	Based on release rate	0.9(predevelopment Q ₁₀₀)
~ 1 1		1.1.1.1.50.1	

Table 12-1. Extended detention basin combined with full spectrum detention

Extended Detention Basin

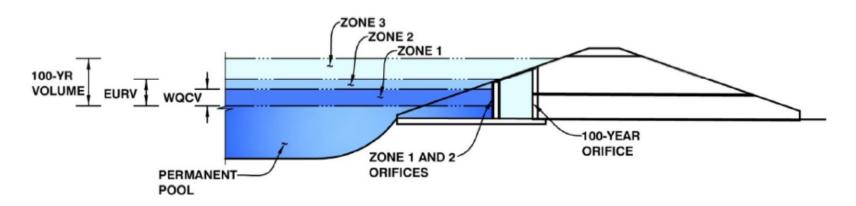


Figure 12-7. Retention pond combined with full spectrum detention

Zone	Volume	VolumeDrain Time of Zone, hrs	
1	12-hr WQCV	12	Based on drain time
2	EURV minus 12-hr WQCV	12 to 60 ¹	Based on drain time
3	100-yr minus EURV	Based on release rate	0.9(predevelopment Q ₁₀₀)

Table 12-2. Retention pond combined with full spectrum detention

Retention Pond

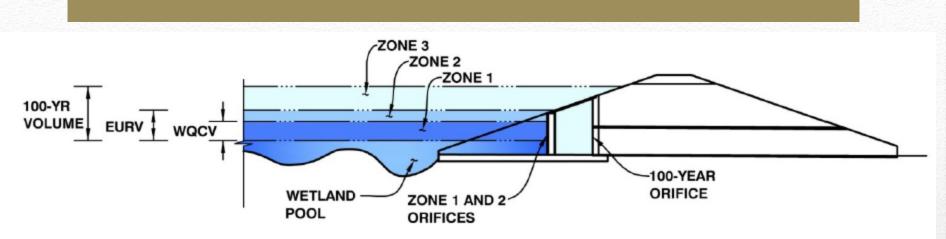
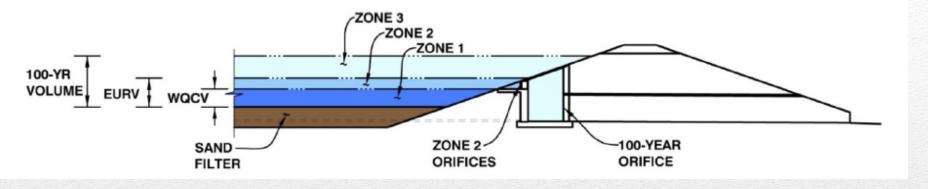
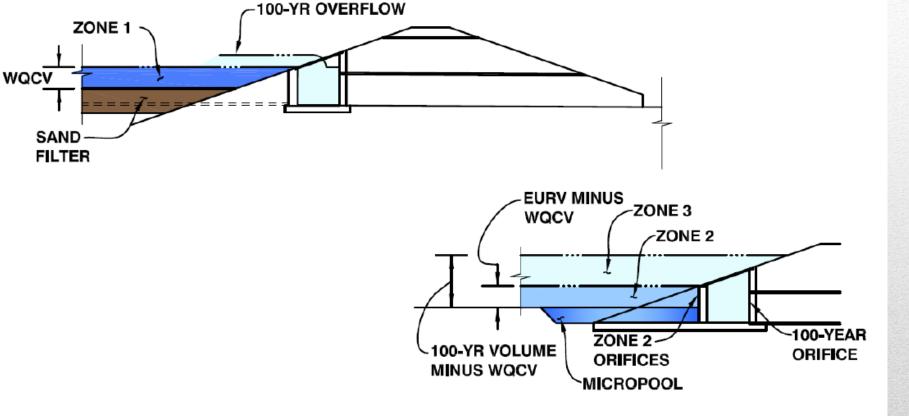


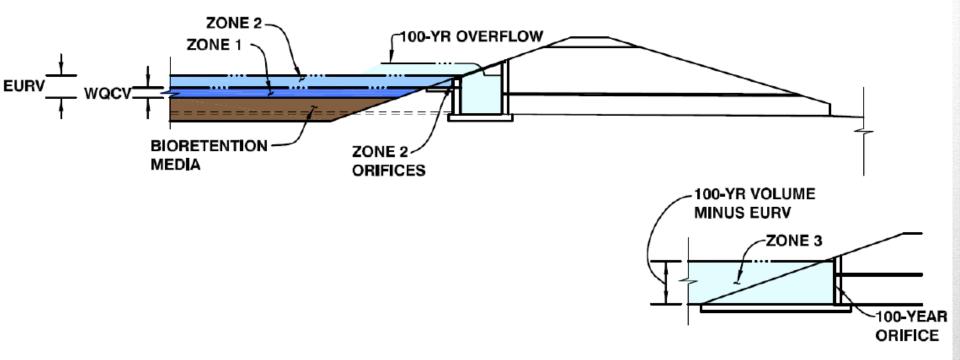
Figure 12-8. Constructed wetland pond combined with full Sspectrum detention

Table 12-3. Constructed wetland pond combined with full spectrum detention

Zone	Volume	Drain Time of Zone, hrs	Maximum Release Rate
1	24-hr WQCV	24	Based on drain time
2	EURV minus 24-hr WQCV	12 to 48 ¹	Based on drain time
3	100-yr minus EURV	Based on release rate	0.9(predevelopment Q ₁₀₀)

Constructed Wetland Pond


Table 12-4. Sand filter or bioretention facility combined with full spectrum detention

Zone	Volume	Drain Time of Zone, hrs	Maximum Release Rate
1	12-hr WQCV	12	Based on drain time
2	EURV minus 12-hr WQCV	12 to 32 ¹	Based on drain time
3	100-yr minus EURV	Based on release rate	0.9(predevelopment Q ₁₀₀)

Sand Filter or Bioretention

Other Configurations

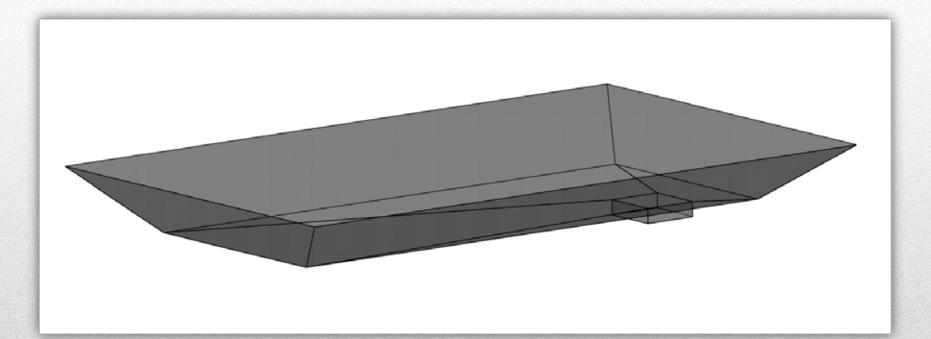
Other Configurations

Research (available at www.udfcd.org):

URBAN DRAINAGE AND FLOOD CONTROL DISTRICT

Paul A. Hindman, Executive Director 2480 W. 26th Avenue, Suite 156B Denver, CO 80211-5304 Telephone 303-455-6277 Fax 303-455-7880 www.udfcd.org

TECHNICAL MEMORANDUM


FROM: Ken A. MacKenzie, P.E., UDFCD Master Planning Program Manager

SUBJECT: Inflow Storm Hydrograph Shaping for Detention Design

DATE: December 17, 2015

The purpose of this memorandum is to document the development of the storm hydrograph shaping method built into the UD-Detention and UD-FSD workbooks. When the UD-FSD workbook was

Basin Modeling

How UD-Detention Works

2/4/2016

Inflow Hydrographs

- 16,000 inflow hydrographs in a hidden library.
- Program selects one for each of the 9 return periods based on expected runoff volume, a function of:
 - watershed area
 - imperviousness
 - NRCS hydrologic soil group

Inflow Hydrographs

- After hydrographs are selected for each of the 9 return periods, they are adjusted in magnitude and length based on expected peak runoff runoff rate, a function of:
 - watershed shape factor (L²/A)
 - watershed slope
 - At each time step, QADJ = Q(Adj. Factor)
 - At each time step, $\Delta tADJ = \Delta t / (Adj. Factor)$
- Hydrograph volume is conserved.

Hydrologic Routing Methods

- Kinematic Wave
- Dynamic Wave
- Muskingum
- Muskingum Cunge
- <u>Modified Puls</u>
 - aka Level-Pool or Storage-Indicator Method
 - Ideal for Reservoir Routing

Modified Puls Routing Method

Continuity Equation:

$$I - O = \frac{dS}{dt}$$

Finite difference form of Continuity Equation:

$$\frac{I_1 + I_2}{2} - \frac{O_1 + O_2}{2} = \frac{S_2 - S_1}{\Delta t}$$

Modified Puls Routing Method

Algebraic transformation of finite difference form of Continuity Equation:

$$I_1 + I_2 + (\frac{2S_1}{\Delta t} - O_1) = \frac{2S_2}{\Delta t} + O_2$$

In this form, all variables on the left-hand side are known at a given time.

- Bioretention Basins
- Sand Filter Basins
- Basins in series
- EDBs/Constructed Wetlands/Retention Ponds (WQCV only)
- EDBs/Constructed Wetlands/Retention Ponds (2-Stage Design)
- EDBs/Constructed Wetlands/Retention Ponds (FSD)

UD-Detention can analyze...

- FSD Extended Detention Basin
- Sand Filter with WQCV, 5-year and 100-year control
- Bioretention WQCV only basin with downstream FSD basin (basins in series)

Examples

• FSD Extended Detention Basin

Required Volume Calculation

Extended Detention Basin (EDB) 🗨	EDB	
Watershed Area =	20.00	acres
Watershed Length =	1,500	ft
Watershed Slope =	0.020	ft/ft
Watershed Imperviousness =	65.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	100.0%	percent
Desired WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	UDFCD Default	

EXTENDED DETENTION BASIN WITH 3 ZONES

Zone 1 Volume (WQCV)	0.424	acre-feet
Zone 2 Volume (EURV - Zone 1)	0.832	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2)	1.063	acre-feet
Total Detention Basin Volume =	2.319	acre-feet
Initial Surcharge Volume (ISV) =	55	ft^3
Initial Surcharge Depth (ISD) =	0.33	ft
Total Available Detention Depth $(H_{total}) =$	5.00	ft
Depth of Trickle Channel (H_{TC}) =	0.50	ft
Slope of Trickle Channel (S_{TC}) =	0.005	ft/ft
Slopes of Main Basin Sides (S_{main}) =	4	H:V
Basin Length-to-Width Ratio ($R_{L/W}$) =	3	
		-

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type	Clear Input Parameters (Including Tables)
Zone 1 (WQCV)	2.33	0.424	Orifice Plate	Orifice Plate
Zone 2 (EURV)	3.59	0.832	Orifice Plate	Orifice Plate
Zone 3 (100-year)	5.00	1.063	Weir&Pipe (Restrict)	Weir and Pipe (w Restrictor Plate)
		2.319	Total	

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)						
	Zone 3 Weir	Not Selected				
Overflow Weir Front Edge Height, Ho =	3.59	N/A	ft (relative to bottom of basin at Stage = 0 ft)			
Overflow Weir Front Edge Length =	5.00	N/A	feet			
Overflow Weir Slope =	0.00	N/A	H:V (enter zero for flat grate)	C		
Horiz. Length of Weir Sides =	5.00	N/A	feet	0		
Overflow Grate Open Area % =	70%	N/A	%, grate open area / total area	O		
Debris Clogging % =	50%	N/A	%			

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

	Zone 3 Restrictor	Not Selected			
Depth to Invert of Outlet Pipe =	2.50	N/A	ft (distance below bottom of	basin at Stage = 0 ft)	
Outlet Pipe Diameter =	24.00	N/A	inches		
Restrictor Plate Height Above Pipe Invert =	15.40		inches	Half-Cen	
User Input: Emergency Spillway (Rectan	User Input: Emergency Spillway (Rectangular or Trapezoidal) Size Outlet Plate to match 90% of Predevelopment 100-year Peak Runoff Rate				
Spillway Invert Stage=	5.00	ft (relative to botto	m of basin at Stage = 0 ft)	4	
Spillway Crest Length =	27.00	feet			
Spillway End Slopes =	4.00	H:V			
Freeboard above Spillway =	1.00	feet			

Routed Hydrograph Results

,				
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	0.95	1.34
Calculated Runoff Volume (acre-ft) =	0.424	1.256	0.996	1.595
ONAL Override Runoff Volume (acre-ft) =				
Inflow Hydrograph Volume (acre-ft) =	0.423	1.255	0.996	1.594
/elopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.01	0.29
Predevelopment Peak Q (cfs) =	0.0	0.0	0.3	5.8
Peak Inflow Q (cfs) =	8.8	25.9	20.6	32.9
Peak Outflow Q (cfs) =	0.2	0.3	0.3	3.7
tio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.6
Structure Controlling Flow =	Plate	Plate	Plate	Overflow Grate 1
Max Velocity through Grate 1 (fps) =	N/A	N/A	NI/A	0.2
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A
to Drain 97% of Inflow Volume (hours) =	40	84	72	87
to Drain 99% of Inflow Volume (hours) =	40	84	72	87
Maximum Ponding Depth (ft) =	2.28	3.52	3.15	3.77
ea at Maximum Ponding Depth (acres) =	0.61	0.70	0.67	0.72
Maximum Volume Stored (acre-ft) =	0.395	1.208	0.955	1.386

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice = Depth at top of Zone using Orifice Plate =

3.59 ft (relative to bottom of basin at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing = 14.40 inches N/A inches

0.00

Orifice Plate: Orifice Area per Row =

Size Plate to match WQCV Drain Time

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)						Drain fillie	
	Row 1 (required) Row 2 (optional) Row 3 (optional						Row 5 (op
Stage of Orifice Centroid (ft)	0.00	1.20		2.40			
Orifice Area (sq. inches)	1.88 1.88 8.00						

ft (relative to bottom of basin at Stage = 0 ft)

Routed Hydrograph Results								
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	0.95	1.34	1.64	2.02	2.32	2.61
Calculated Runoff Volume (acre-ft) =	0.424	1.256	0.996	1.595	2.088	2.796	3.322	3.899
OPTIONAL Override Runoff Volume (acre-ft) =								
Inflow Hydrograph Volume (acre-ft) =	0.423	1.255	0.996	1.594	2.087	2.796	3.322	3.899
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.01	0.29	0.49	0.93	1.17	1.47
Predevelopment Peak Q (cfs) =	0.0	0.0	0.3	5.8	9.8	18.5	23.5	29.4
Peak Inflow Q (cfs) =	8.8	25.9	20.6	32.9	43.0	57.8	68.8	80.9
Peak Outflow Q (cfs) =	0.2	0.5	0.4	3.6	11.4	23.0	25.7	26.5
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.6	1.2	1.2	1.1	0.9
Structure Controlling Flow =	Plate	Plate	Plate	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	Outlet Plate
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.2	0.6	1.3	1.4	1.5
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	40	69	63	72	72	72	72	72
Time to Drain 99% of Inflow Volume (hours) =	40	70	63	72	72	72	72	72
Maximum Ponding Depth (ft) =	2.28	3.49	3.12	3.76	3.99	4.24	4.51	4.92
Area at Maximum Ponding Depth (acres) =	0.61	0.70	0.67	0.72	0.73	0.75	0.77	0.80
Maximum Volume Stored (acre-ft) =	0.395	1.181	0.934	1.378	1.538	1.723	1.936	2.259

• Sand Filter with WQCV, 5-year and 100-year control

Required Volume Calculation

Sand Filter (SF)	SF	
Watershed Area =	3.00	acres
Watershed Length =	600	ft
Watershed Slope =	0.020	ft/ft
Watershed Imperviousness =	85.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	50.0%	percent
Percentage Hydrologic Soil Groups C/D =	50.0%	percent
Desired WQCV Drain Time =	12.0	hours
Location for 1-hr Rainfall Depths =	Golden - Schoo	of Mines 🔹

Stage-Storage Calculation

	_		
Zone 1 Volume (WQCV)]=	0.072	acre-feet
Zone 2 Volume (5-year - Zone 1)]=	0.218	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2)	-	0.120	acre-feet
Total Detention Basin Volume	=	0.410	acre-feet
Initial Surcharge Volume (ISV) =	N/A	ft^3
Initial Surcharge Depth (ISD)) =	N/A	ft
Total Available Detention Depth (H _{total}) =	4.00	ft
Depth of Trickle Channel (HTC)) =	N/A	ft
Slope of Trickle Channel (STC) =	N/A	ft/ft
Slopes of Main Basin Sides (Smain) =	3	H:V
Basin Length-to-Width Ratio (RL/W) =	6	

20NE 3 20NE 2 20NE 1		Stage (ft)	Zone Volume (ac-ft)	Outlet Type	Clear Input Paramete (Including Tables)		
	Zone 1 (WQCV)	1.04	0.072	Filtration Media	Filtration Media with Underd	train 💌	
ZONE 2 ZONE 3 ORIFICE	Zone 2 (5-year)	3.12	0.218	Circular Orifice	Vertical Orifice (Circular)	-	
ORIFICES	Zone 3 (100-year)	3.97	0.120	Weir&Pipe (Restrict)	Weir and Pipe (w/ Restrictor	Plate) 💌	
/ITH 3 ZONES			0.410	Total			
t (typically used to drain WQCV in a Filtration BMP)			Calculated Parameters for Underdrain				
ert Depth = 3.00 ft (distance below t	he filtration media sur	face)	Underdrain Orifice Area = 0.0 ft ²				
Diameter = 1.24 inches Cal	Diameter to Time	Underdrain Orifice Centroid = 0.05 feet					
User Input: Vertical Orif	ice (Circular or R	actangular)					

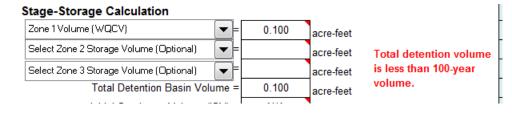
User Input: Vertical Orifice (Circ			
	Zone 2 Circular	Not Selected	
Invert of Vertical Orifice =	1.04	N/A	ft (relative to bottom of basin at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	3.12	N/A	ft (relative to bottom of basin at Stage = 0 ft)
Vertical Orifice Diameter =	4.50	N/A	inches

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)									
	Zone 3 Weir	Not Selected							
Overflow Weir Front Edge Height, Ho =	3.12	N/A	ft (relative to bottom of basin at Stage = 0 ft)						
Overflow Weir Front Edge Length =	3.00	N/A	feet						
Overflow Weir Slope =	3.00	N/A	H:V (enter zero for flat grate)	G					
Horiz. Length of Weir Sides =	3.00	N/A	feet	0					
Overflow Grate Open Area % =	70%	N/A	%, grate open area / total area	٥v					
Debris Clogging % =	50%	N/A	%						

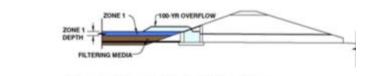
User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

	Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	3.10	N/A	ft (distance below bottom of basin at Stage = 0 ft)
Outlet Pipe Diameter =	12.00	N/A	inches
Restrictor Plate Height Above Pipe Invert =	5.00		inches Half-Cen

User Input: Emergency Spillway (Rectangular or Trapezoidal)


Spillway Invert Stage=	4.00	ft (relative to bottom of basin at Stage = 0 ft)
Spillway Crest Length =	10.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Spillway =	1.00	feet
		1

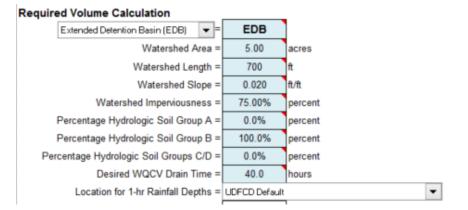
Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.01	1.42	1.67	1.91	2.26	2.54	3.13
Calculated Runoff Volume (acre-ft) =	0.072	0.268	0.212	0.311	0.377	0.449	0.543	0.624	0.789
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	0.072	0.268	0.211	0.310	0.377	0.449	0.542	0.624	0.788
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.01	0.23	0.41	0.85	1.09	1.38	1.94
Predevelopment Peak Q (cfs) =	0.0	0.0	0.0	0.7	1.2	2.6	3.3	4.1	5.8
Peak Inflow Q (cfs) =	1.5	5.5	4.3	6.3	7.7	9.1	11.0	12.7	16.0
Peak Outflow Q (cfs) =	0.1	0.7	0.6	0.7	0.9	1.9	3.5	3.9	7.3
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	1.1	0.7	0.7	1.1	0.9	1.2
Structure Controlling Flow =	Filtration Media	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.0	0.2	0.4	0.4	0.4
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	12	19	18	19	20	20	20	20	20
Time to Drain 99% of Inflow Volume (hours) =	12	19	18	19	20	20	20	21	21
Maximum Ponding Depth (ft) =	0.88	2.42	2.02	2.71	3.14	3.42	3.63	3.86	4.22
Area at Maximum Ponding Depth (acres) =	0.08	0.11	0.10	0.12	0.13	0.14	0.14	0.15	0.16
Maximum Volume Stored (acre-ft) =	0.059	0.205	0.162	0.240	0.294	0.331	0.360	0.393	0.448


Bioretention WQCV only basin with downstream FSD basin (basins in series)

Required Volume Calculation		
Rain Garden (RG) - Bioretention 🗨 =	RG	
Watershed Area =	5.00	acres
Watershed Length =	700	ft
Watershed Slope =	0.020	ft/ft
Watershed Imperviousness =	75.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Desired WQCV Drain Time =	12.0	hours
Location for 1-hr Rainfall Depths =	UDFCD Default	•

Depth Increment =		ft							
Stage Starses	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Stage - Storage Description	Stage (ft)	Stage (ft)	(ft)	(ft)	(ft^2)	Area (ft^2)	(acre)	(ft^3)	(ac-ft)
Media Surface		0.00				3,267	0.075		
		1.00				5,600	0.129	4,378	0.100
		6.00				5,600	0.129	32,433	0.745

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type	Clear Input Parameters (Including Tables)
Zone 1 (WQCV)	0.99	0.100	Filtration Media	Filtration Media with Underdrain
Zone 2			Not Utilized	Zone 2 Not Utilized
Zone 3			Not Utilized	Zone 3 Not Utilized
		0.100	Total	
				The second se


User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	1.00	ft (relative to bottom of basin at Stage = 0 ft)
Spillway Crest Length =	20.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Spillway =	1.00	feet

Detention Basin Outlet Structure Design

Reset hyd	drographs to def	fault	Outflow Hydrograph Workbook Filename:							
values	from workbook		Use relative path name			Export Outflow Hydrographs to a blank workbook for				
	Storm Inflow I	Hydrographs					later u	se in a downstre	am UD-Detention	n Workbook
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.										
	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.17 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:10	0.00	0.02	0.01	0.02	0.02	0.03	0.03	0.04	0.05
Hydrograph	0:10:20	0.13	0.50	0.35	0.52	0.65	0.84	0.98	1.12	1.42
Constant	0:15:31	0.30	1.20	0.83	1.25	1.59	2.06	2.42	2.79	3.59
0.967	0:20:41	0.83	3.32	2.31	3.47	4.39	5.67	6.67	7.69	9.84

Open new workbook...

Stage-Storage Calculation

Zone 1 Volume (EURV-WQCV)	0.289	acre-feet
Zone 2 Volume (100-year - Zone 1)	0.366	acre-feet
Select Zone 3 Storage Volume (Optional)		acre-feet
Total Detention Basin Volume =	0.655	acre-feet
Initial Surcharge Volume (ISV) =	16	ft^3
Initial Surcharge Depth (ISD) =	0.33	ft
Total Available Detention Depth (H _{total}) =	4.00	ft
Depth of Trickle Channel (H _{TC}) =	0.00	ft
Slope of Trickle Channel (S_{TC}) =	0.019	ft/ft
Slopes of Main Basin Sides (S _{main}) =	4	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	2	

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type	Clear Input Parameters (Including Tables)		
e 1 (EURV - WQCV)	3.08	0.289	Circular Orifice	Vertical Orifice (Circular)		
Zone 2 (100-year)	4.00	0.366	Weir&Pipe (Restrict)	Weir and Pipe (w/Restrictor Plate)	•	
Zone 3			Not Utilized	Zone 3 Not Utilized		
_		0.655	Total			
			Calculate	d Parameters for Underdrain		
filtration media surf	ace)	Und	erdrain Orifice Area =	N/A ft ²		
		Underdr	ain Orifice Centroid =	N/A feet		

(Drain EURV-WQCV in 12 hours)

Freeboard above Spillway =

User Input: Vertical Orifice (Circular or Rectangular)							
Zone 1 Circular	Not Selected						
0.00	N/A	ft (relative to bottom of basin at Stage = 0 ft)					
3.08	N/A	ft (relative to bottom of basin at Stage = 0 ft)					
3.17	N/A	inches					
	Zone 1 Circular 0.00 3.08	Zone 1 CircularNot Selected0.00N/A3.08N/A					

User Input: Overflow Weir (Dropbox) and G	irate (Flat or Sloped)		
	Zone 2 Weir	Not Selected]
Overflow Weir Front Edge Height, Ho =	3.08		ft (relative to bottom of basin at Stage = 0 fi
Overflow Weir Front Edge Length =	4.00		feet
Overflow Weir Slope =	4.00		H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	4.00		feet
Overflow Grate Open Area % =	70%		%, grate open area / total area
Debris Clogging % =	50%		%
ser Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Rest Zone 2 Restrictor	rictor Plate, or Recta Not Selected	ngular Orifice)
Depth to Invert of Outlet Pipe =	0.20		ft (distance below bottom of basin at Stage
Outlet Pipe Diameter =	18.00		inches
Restrictor Plate Height Above Pipe Invert =	6.00		inches H
User Input: Emergency Spillway (Rectan		Plate to match 90% of 100-vear Peak Runoff Rate	
Spillway Invert Stage=		ft (relative to botto	m of basin at Stage = 0 ft)
Spillway Crest Length =		feet	-
Spillway End Slopes =		H:V	1

feet

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	3.80	ft (relative to bo
Spillway Crest Length =	8.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Spillway =	1.00	feet
		-

Predevelopment 100-vear Peak Runoff Rate
(relative to bottom of basin at Stage = 0 ft)

Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	0.95	1.34	1.64	2.02	2.32	2.61	3.29
Calculated Runoff Volume (acre-ft) =	0.125	0.414	0.285	0.434	0.556	0.730	0.867	1.008	1.316
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =		0.346	0.218	0.366	0.488	0.661	0.798	0.940	1.247
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.01	0.19	0.38	0.86	1.12	1.43	2.01
Predevelopment Peak Q (cfs) =	0.0	0.0	0.1	1.0	1.9	4.3	5.6	7.1	10.1
Peak Inflow Q (cfs) =	0.1	8.5	4.6	9.1	11.5	16.4	20.4	24.0	30.9
Peak Outflow Q (cfs) =	0.1	0.4	0.4	0.4	1.2	3.1	4.8	6.5	10.0
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.5	0.6	0.7	0.9	0.9	1.0
Structure Controlling Flow =	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.1	0.2	0.4	0.5	0.5
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	8	11	9	12	14	14	14	14	14
Time to Drain 99% of Inflow Volume (hours) =	8	11	9	12	14	14	14	14	14
Maximum Ponding Depth (ft) =	0.30	2.94	2.40	3.00	3.29	3.52	3.66	3.78	4.05
Area at Maximum Ponding Depth (acres) =	0.00	0.27	0.18	0.28	0.34	0.39	0.42	0.45	0.49
Maximum Volume Stored (acre-ft) =	0.000	0.249	0.133	0.268	0.355	0.442	0.495	0.552	0.676