The Building Code Effectiveness Grading Schedule (BCEGS®)

Colorado CRS Committee

August 25, 2016 - Denver Colorado

Presenter: Dale K. Thomure, CBO, CFM
Community Hazard Mitigation Manager - ISO
About the presentation today……

• Who are we? What do we do?
• The Building Code Effectiveness Grading Schedule (BCEGS)
• BCEGS classifications in Colorado
• Application and use of BCEGS
• Academic studies about building code enforcement
• Future development of BCEGS
ISO is part of Verisk Analytics

Verisk is licensed rating organization and a leading supplier of:

- Statistical data
- Actuarial data
- Underwriting information
- Standardized coverage forms
- Class & rating programs
- Advisory services
ISO – Community Mitigation Programs

- Fire Suppression Rating Schedule (FSRS)
 - Public Protection Classification (PPC®) Program

- Building Code Effectiveness Grading Schedule (BCEGS®)

- FEMA/NFIP Community Rating System (CRS)
 * Administrator of program
What is BCEGS?

• Rating Program
 – Measures resources and support made available to the enforcement of building codes and the utilization of those resources.
 • Objectives:
 – Improved enforcement of building codes
 – Better catastrophe-resistant buildings
 – Reduce insurance losses.
 – Modeled after the PPC Program.
 – Created as a cooperative effort between government and industry.
 – Approved or licensed in all 50 states.
 • Bureau States
 • State Filings
 – BCEGS Schedule
 • Second Edition
BC EEGS Survey Workflow

1. Initial letter and questionnaire sent to the community.
2. Appointment scheduled.
3. Meeting between community and ISO staff.
4. Data reviewed and point calculations made.
5. Results are provided to the community.
Preparing for a BCEGS Survey

Information reviewed during the survey:

- BCEGS questionnaire
 - Data for a 12-month period
- Code adoption ordinances
- Job descriptions
- Budget information
- Employee Data Sheets (EDS)
All in the Numbers

- Permits
- Plan reviews
- Inspections
- Responsibilities
- Training
- Certification
- Continuing education
- Budget information
- Public awareness
- Property value
BC EG S Key Program Elements

- Minimum criteria for inclusion
- Assigns a rating of 1-10
 - Personal Lines Rating
 - Commercial Lines Rating
- Updated on a 5-year cycle
- Areas of review
 - Administration of codes (54%)
 - Review of building plans (23%)
 - Field inspections (23%)
Section I: Administration of Codes – 54%

Overview:
- Adoption of building codes
- Training of staff
- Certification of staff
- Incentive programs
- Building official qualifications
<table>
<thead>
<tr>
<th>SECTION</th>
<th>ITEM</th>
<th>POINTS POSSIBLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>Adopted Codes</td>
<td>8.00</td>
</tr>
<tr>
<td>108</td>
<td>Additional Code Adoptions</td>
<td>4.00</td>
</tr>
<tr>
<td>110</td>
<td>Modification to Adopted Codes</td>
<td>4.00</td>
</tr>
<tr>
<td>112</td>
<td>Method of Code Adoption</td>
<td>1.00</td>
</tr>
<tr>
<td>115</td>
<td>Training</td>
<td>13.00</td>
</tr>
<tr>
<td>120</td>
<td>Certification</td>
<td>12.00</td>
</tr>
<tr>
<td>125</td>
<td>Building Official – Qualifications / Experience / Education</td>
<td>4.00</td>
</tr>
<tr>
<td>130</td>
<td>Selection Procedures for Building Official</td>
<td>.50</td>
</tr>
<tr>
<td>135</td>
<td>Design Professionals</td>
<td>2.0</td>
</tr>
<tr>
<td>140</td>
<td>Zoning Provisions</td>
<td>1.0</td>
</tr>
<tr>
<td>145</td>
<td>Contractor / Builder Licensing and Bonding</td>
<td>1.0</td>
</tr>
<tr>
<td>155</td>
<td>Public Awareness Programs</td>
<td>2.50</td>
</tr>
<tr>
<td>160</td>
<td>Participation in Code Development Activities</td>
<td>.50</td>
</tr>
<tr>
<td>165</td>
<td>Administrative Policies and Procedures</td>
<td>.50</td>
</tr>
<tr>
<td></td>
<td>TOTAL POINTS IN SECTION I</td>
<td>54.00</td>
</tr>
</tbody>
</table>
Section II: Plan Review – 23%

Overview:
• Staffing
• Qualifications of plan review staff
• Detail of plan review
• Quality assurance
BC EG S Schedule - Section II

<table>
<thead>
<tr>
<th>SECTION</th>
<th>ITEM</th>
<th>POINTS POSSIBLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>205</td>
<td>Existing Plan Review Staffing</td>
<td>9.00</td>
</tr>
<tr>
<td>210</td>
<td>Experience of Personnel</td>
<td>1.50</td>
</tr>
<tr>
<td>215</td>
<td>Detail of Plan Review</td>
<td>11.50</td>
</tr>
<tr>
<td>220</td>
<td>Performance Evaluations for Quality Assurance</td>
<td>1.0</td>
</tr>
</tbody>
</table>

TOTAL POINTS IN SECTION II

<table>
<thead>
<tr>
<th></th>
<th>23.00</th>
</tr>
</thead>
</table>

© Verisk Analytics, Inc. All rights reserved.
Section III: Inspection – 23%

Overview:
• Staffing
• Qualifications
• Level of detail of inspections
• Final inspections and occupancy permits
• Quality assurance
BCEGS Schedule - Section III

<table>
<thead>
<tr>
<th>SECTION</th>
<th>ITEM</th>
<th>POINTS POSSIBLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>305</td>
<td>Existing Inspection Staffing</td>
<td>9.00</td>
</tr>
<tr>
<td>310</td>
<td>Experience of Personnel</td>
<td>3.0</td>
</tr>
<tr>
<td>315</td>
<td>Managing Inspection and Re-inspection Activity</td>
<td>1.0</td>
</tr>
<tr>
<td>320</td>
<td>Inspection Checklists</td>
<td>2.0</td>
</tr>
<tr>
<td>325</td>
<td>Special Inspections</td>
<td>1.0</td>
</tr>
<tr>
<td>330</td>
<td>Inspections for Natural Hazard Mitigation</td>
<td>1.50</td>
</tr>
<tr>
<td>335</td>
<td>Final Inspections</td>
<td>2.50</td>
</tr>
<tr>
<td>340</td>
<td>Certificate of Occupancy Programs</td>
<td>2.0</td>
</tr>
<tr>
<td>345</td>
<td>Performance Evaluations for Quality Assurance</td>
<td>1.0</td>
</tr>
</tbody>
</table>

TOTAL POINTS IN SECTION III

23.00
National BCEGS Classifications

Distribution of Building Code Enforcement Departments by BCEGS Classifications
Personal Lines Only
State of Colorado compared to the Nation

<table>
<thead>
<tr>
<th>Class</th>
<th>Colorado</th>
<th>National BCEGS Classifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0%</td>
<td>0.1%</td>
</tr>
<tr>
<td>2</td>
<td>6.7%</td>
<td>3.1%</td>
</tr>
<tr>
<td>3</td>
<td>23.8%</td>
<td>18.0%</td>
</tr>
<tr>
<td>4</td>
<td>30.5%</td>
<td>34.0%</td>
</tr>
<tr>
<td>5</td>
<td>9.5%</td>
<td>18.2%</td>
</tr>
<tr>
<td>6</td>
<td>2.9%</td>
<td>5.9%</td>
</tr>
<tr>
<td>7</td>
<td>0.0%</td>
<td>2.5%</td>
</tr>
<tr>
<td>8</td>
<td>10.0%</td>
<td>1.3%</td>
</tr>
<tr>
<td>9</td>
<td>21.0%</td>
<td>14.0%</td>
</tr>
<tr>
<td>10</td>
<td>4.8%</td>
<td>2.8%</td>
</tr>
</tbody>
</table>

Percentage of Classifications
BCEGS At-A-Glance

Classifications covering approximately 17,000 unique departments that are protecting 20,000 communities the population of which comprises 87% of U.S. population.

Each BCEGS survey collects 1,243 individual data elements – The BCEGS database contains over 43 Million individual data elements.
Benchmarking Report

• Section by section results
 – Staffing
 – Training
 – Code Adoption
• Peer comparisons
 – County, State and National
• Comparison to previous result
• Natural hazard frequency
• Unique customized report

Table 4-1 Training hours for Eliot

<table>
<thead>
<tr>
<th>Administrative</th>
<th>Total hours for department</th>
<th>Average hours of training</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14.00</td>
<td>14.00</td>
</tr>
<tr>
<td>Legal</td>
<td>12.00</td>
<td>12.00</td>
</tr>
<tr>
<td>Mentoring</td>
<td>48.00</td>
<td>48.00</td>
</tr>
<tr>
<td>Technical</td>
<td>65.00</td>
<td>65.00</td>
</tr>
</tbody>
</table>

Chart 4-2 Comparison of average hours of training
BC EGS: Value

<table>
<thead>
<tr>
<th>The Value to Insurers</th>
<th>The Value to Communities</th>
</tr>
</thead>
<tbody>
<tr>
<td>The ability to:</td>
<td>The ability to:</td>
</tr>
<tr>
<td>Assess—with reasonable assurance of accuracy—the dollar value of potential losses within communities</td>
<td>Assess—review the community’s readiness (its strengths and weaknesses) to face catastrophes as well as everyday perils</td>
</tr>
<tr>
<td>Decide—make informed underwriting decisions, selecting or rejecting risks based on potential loss and loss magnitude</td>
<td>Anticipate—estimate the costs to implement programs that would mitigate loss if a catastrophe should occur</td>
</tr>
<tr>
<td>Price—provide coverages at adequate premiums and determine credits or surcharges that address unique situations</td>
<td>Recommend—develop mitigation programs and support those recommendations with solid estimates of potential losses and costs</td>
</tr>
<tr>
<td>Market—seek to meet insurance needs with the most appropriate programs at the most reasonable cost</td>
<td>Continually improve—implement mitigation programs and develop long-range plans to steadily and constantly improve</td>
</tr>
<tr>
<td>Review—regularly look at books of business and conduct portfolio analyses</td>
<td>Manage risk—reduce risk to public properties and services to businesses and to all citizens</td>
</tr>
</tbody>
</table>
BC EGS Data Applicability

Insurance Rating & Underwriting

NFIP CRS Program

Other Industry Programs

Academic Studies

FEMA Grants and Programs

Resiliency and Mitigation Efforts
Is there any connection between the BCEGS classification and the PPC classification of my community? **YES!**

There are direct impacts of the performance of your building code department upon the PPC classification that your community may receive due to the Needed Fire Flow (NFF) calculations in the PPC program and activities recognized in the Community Risk Reduction (CRR) section of the PPC Schedule.

- NFF calculations determine the amount of fire department resources that are required for a protection class.
 - If the building code department is enforcing the building code provisions of automatic sprinkler systems in commercial buildings, then the NFF is reduced. Thereby, requiring a department to expend less resources to achieve a favorable classification.
- Additionally, community planning efforts and land-use regulations can also have an impact upon NFF due to the distance between buildings.
- Additional credit is given in the PPC classification (CRR) for risk reduction efforts in the jurisdiction.
 - Annual Inspection Programs
 - Fire Prevention Code Adoption / Enforcement
BCEGS and PPC: Equipment Required Based on NFF

Building NFF based on:
- Effective area
- Construction Factor
- Occupancy Factor
- Exposure Factor
- Needed Fire Flow Reports
- Sprinklered - NFF = 0 gpm

<table>
<thead>
<tr>
<th>Basic Fire Flow</th>
<th>Needed Engines</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 – 1000 gpm</td>
<td>1</td>
</tr>
<tr>
<td>1250 – 2500 gpm</td>
<td>2</td>
</tr>
<tr>
<td>3000 – 3500 gpm</td>
<td>3</td>
</tr>
</tbody>
</table>

Additional engines may be needed by operations.
BC EG S Data Application

- Building Underwriting Reports (BUR)
BCEGS in BG II Loss Cost

• *Advisory Loss Cost* is a projection of an insurer’s average future loss and loss adjustment expenses
 - Our most comprehensive analytic for the industry!
• Delivered for both BG I (fire) and BG II (wind)
• Based on Construction, Occupancy, Protection and Exposure (COPE) information published by Verisk
• Developed using field-verified property information as well as historical premium and claims data
• BCEGS factor can be used by insurers to adjust the BG II loss Cost
• Utilizes ISO’s 3 rating schedules – SCOPES, FSRS and BCEGS
• Loss Cost + Expense Load + Profit Load = Rate
BCMG S Data Application

BCMG in BG II
Loss Cost

ProMetrix BCEGS in BG II
Loss Cost

Building - SMITHEE VOCATIONAL (2S) CSP Class: 0921 Line #: 010

<table>
<thead>
<tr>
<th>Building - SMITHEE VOCATIONAL (2S)</th>
<th>CSP Class: 0921 Line #: 010</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG I Loss Cost-Specific</td>
<td>EA Factor</td>
</tr>
<tr>
<td>0.023</td>
<td>0.317</td>
</tr>
</tbody>
</table>

Enhanced Wind Basic Group II Loss Cost Information (more info)

<table>
<thead>
<tr>
<th>Building - SMITHEE VOCATIONAL (2S)</th>
<th>CSP Class: 0921 Line #: 010</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG II Enhanced Loss Cost-Specific</td>
<td>Wind Factor Indicated</td>
</tr>
<tr>
<td>0.037</td>
<td>0.925</td>
</tr>
</tbody>
</table>

Limit of Insurance
Applicable: No

Occupant - VOCATIONAL TRADE SCHOOL CSP Class: 0921 Line #: 015

<table>
<thead>
<tr>
<th>Occupant - VOCATIONAL TRADE SCHOOL</th>
<th>CSP Class: 0921 Line #: 015</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG I Loss Cost-Specific</td>
<td>EA Factor</td>
</tr>
<tr>
<td>0.035</td>
<td>0.317</td>
</tr>
</tbody>
</table>

Enhanced Wind Basic Group II Loss Cost Information (more info)

<table>
<thead>
<tr>
<th>Occupant - VOCATIONAL TRADE SCHOOL</th>
<th>CSP Class: 0921 Line #: 015</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG II Enhanced Loss Cost-Specific</td>
<td>Wind Factor Indicated</td>
</tr>
<tr>
<td>0.021</td>
<td>0.925</td>
</tr>
</tbody>
</table>
BC EGS Data Application

• Enhanced Wind Rating Program
 – Modification to Loss-Cost based on details specific to a building
BC EGS Data Application
State Fact Sheets

- Over 200 data elements per state
- Includes Major Metropolitan Areas
- Includes Code Adoption History
- FEMA Use
BC EG S Data Application

• Community Rating System (CRS)

432.h BC2 credits the community’s Building Code Effectiveness Grading Schedule (BCEGS) classification.

(2) BC2 = one of the following. These points are not cumulative.

(a) 10 points, for a BCEGS classification of 5/5, OR
(b) 20 points, for a BCEGS classification of 4/4, OR
(c) 30 points, for a BCEGS classification of 3/3, OR
(d) 40 points, for a BCEGS classification of 2/2, OR
(e) 50 points, for a BCEGS classification of 1/1

b. Class 6 Prerequisite: To become a Class 6 or better community, a community must have received a classification of 5/5 or better under the Building Code Effectiveness Grading Schedule.
BC EG S Data Application

- FEMA
 - Loss Avoidance
 - Mitigation Planning

Building Codes in the New Madrid Seismic Zone (NMSZ)

Building codes are the technical requirements for design and construction of buildings. In the U.S., State and local governments have jurisdiction over adoption and enforcement of local building codes. Since developing such highly technical documents involves extensive knowledge, skills, and resources, it is practical that the national model codes are adopted by the State and local jurisdictions. The national model building codes such as the International Building Code® (IBC®) and International Residential Code® (IRC®) have all included community-based minimum design requirements to assist seismic and other natural hazards. History has proven that communities that adopted and enforced building codes with full seismic provisions can significantly reduce loss of life and property in major earthquakes. FEMA under the National Earthquake Hazard Reduction Program (NEHRP) strongly encourages States and local communities to adopt and enforce the national model building codes with full seismic provisions.

The New Madrid Seismic Zone (NMSZ) stretches over 5000 square miles across seven States (Arkansas, Illinois, Indiana, Kentucky, Missouri, Minnesota, and Tennessee). Today over nine million people reside in this area. Approximately 200 years ago, three great earthquake shocks within a two-month period caused extensive damage and casualties. Even though earthquakes have not occurred as frequently as in California, the area has long been recognized to be vulnerable if hit again by a great earthquake of similar magnitude. Despite the significant risk, many communities here have not taken sufficient earthquake protection, in particular, adoption and enforcement of building codes in the NMSZ is yet spotty at best.

Building Codes at State Level

To date, among the seven States in the NMSZ, four (Arkansas, Indiana, Kentucky, and Tennessee) have statewide building codes at minimum requirements, but three (Illinois, Minnesota, and Missouri) do not and they pass the responsibility to the local jurisdictions to adopt the codes there. In each State guided by the State’s building code, the local jurisdiction has jurisdiction over adoption and enforcement of the State building code for the jurisdiction. The following summarizes the building codes in each of the seven States:

The State of Arkansas has adopted the 2006 International Codes, including IBC and IRC, into its State code - the Arkansas Fire Prevention Code. The State code is mandatory and applicable to all buildings. It is required that local codes must be in accordance with the State code, and only more stringent amendments are allowed by local adoption. The State only oversees code enforcement for state capital investments. Local authorities have jurisdiction over private, district, municipal, and county construction.

The State of Illinois has no statewide mandatory building code in place. Building code adoption and enforcement is primarily the responsibility of local authority having jurisdiction. The Capital Development Board of the State government oversees design and construction of new buildings for schools, universities, and State-owned facilities. The local jurisdictions are responsible for one- and two-family dwellings. The State requires mandatory enforcement of the codes and only allows more stringent amendments by local adoption. A State agency oversees code enforcement for public, commercial, industrialized buildings and mobile structures. Local jurisdictions are responsible for one- and two-family dwellings. The State of Kentucky has adopted the 2006 IBC and IRC with specific Kentucky amendments. The amendments weakened the model building codes by downgrading the designated seismic design categories to lower levels. The Kentucky Building Code (IBC) is mandatory statewide. Local jurisdictions may not exceed the State code. The codes are applicable to all buildings except farm dwellings and those manufactured homes constructed following the Federal Housing and Urban Development (HUD) standards.

The State of Mississippi does not have statewide building codes. Building code adoption and enforcement is primarily the responsibility of local jurisdictions. Mississippi requires that all State buildings meet the requirements set forth in the 1997 Standard Building Code. In 2006, Bill 1460 created the Mississippi Building Code Council, and required five coastal counties (Hancock, Harrison, Jackson, Pearl River, and Stone) to enforce, on an emergency basis, all of the wind and flood mitigation requirements prescribed by the 2003 IBC and IRC.

Losses Avoided as a Result of Adopting and Enforcing Hazard-Resistant Building Codes

FEMA

Building Science Branch

April 2015
BC EGS Data Application
FEMA Hazard Mitigation Grant Program

• Part of Hazard Mitigation Assistance (HMA)
• Additional 5% Initiative
 – 5% may be used to fund additional hazard mitigation measures
 – May increase up to 10% for additional activities that promote disaster-resistant codes
 – Must adopt disaster-resistant codes or improve BCEGS score.
BC EG S Data Application
FEMA PDM Grant Programs

- Part of Hazard Mitigation Assistance (HMA)
- BC EG S Classifications used to prioritize applications.
- Introduced in 2015 Cycle

Key FY 2015 PDM Grant Program Changes

- FEMA revised the application limits from FY 2014 to allow a maximum of 3 project sub-applications out of 11 sub-applications per applicant: 10 for mitigation planning and projects, plus 1 management cost sub-application for applicant management costs up to 10% of the total of the planning and project sub-applications.
- FEMA will prioritize mitigation planning and project sub-applications from applicants without Hazard Mitigation Grant Program (HMGP) funds available before applications from applicants with HMGP funds available.
- FEMA will prioritize activities in communities with the highest assessed Building Code Effectiveness Grading Schedule rating from a grade of 1 to 10.
BC EGS Data Application

• Academic, Government and Insurance Industry Studies
 – Wharton School
 – Internal ISO Studies
"A midsize community of 50,000 people that experiences a moderate hail storm could expect to reduce losses by approximately $4 to $8 million by adopting and enforcing appropriate building codes."

"Communities with a favorable BCEGS score can expect a 12 – 18% reduction in damage as compared to less favorable scores."
Empirical Results Verify the Benefits of Effective and Well-Enforced Building Codes

- Results show the strong effect that the statewide FBC had on losses from wind storms during this timeframe.
 - Windstorm losses are shown to be reduced by as much as 72 percent due to the implementation of the FL statewide codes, consistent with other previous findings

- BCEGS ratings perform as expected, i.e., better ratings translate into lower losses
 - compared to FL zip codes with low and missing BCEGS ratings, FL zip codes with more favorable BCEGS ratings reduce losses by 15 percent
 - higher BCEGS strength ratings in particular reduce windstorm losses on the order of 42 to 55 percent when combined with newer construction

- Results control for other exposure and vulnerability factors and are robust to a number of additional analyses
ISO Fire Frequency Study

Fire Frequency by state BCEGS Score category

Average Annual Fires (avg '09-'11) / 1k people
(10 census)

2011 State BCEGS score

Sources:
- 2010 Census
- NFIRS
- BCEGS database
First Ever National Report From ISO

National Building Code Assessment Report

ISO’s Building Code Effectiveness Grading Schedule 2015

Colorado

BCEGS State Averages

<table>
<thead>
<tr>
<th></th>
<th>Score</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>69</td>
<td>4</td>
</tr>
<tr>
<td>Residential</td>
<td>69</td>
<td>4</td>
</tr>
</tbody>
</table>

The BCEGS 1-10 classification is based on a 1-to-100 point scale. For complete details on the scoring process, see pages 9, “BCEGS Grading Process,” and “Determining a BCEGS Classification.”

By the Numbers

46 FEMA/National Flood Insurance Program Community Rating System (CRS) communities in the state

4,055 Average population serviced per certified building code official in the state

State Facts

1,006,758 Acres burned by more than 13,000 wildfires in Colorado over the past 10 years (NCC)

Building Code Adoption History (as of 6/30/15)

<table>
<thead>
<tr>
<th>ICC Code Release</th>
<th>Commercial Date Adopted</th>
<th>Residential Date Adopted</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>7/1/15</td>
<td>Not adopted</td>
</tr>
<tr>
<td>2006</td>
<td>Not adopted</td>
<td>Not adopted</td>
</tr>
<tr>
<td>2009</td>
<td>7/1/10</td>
<td>Not adopted</td>
</tr>
<tr>
<td>2012</td>
<td>Not adopted</td>
<td>Not adopted</td>
</tr>
<tr>
<td>2015</td>
<td>Not adopted</td>
<td>Not adopted</td>
</tr>
</tbody>
</table>

© Verisk Analytics, Inc. All rights reserved.
10 Years of BCEGS data utilized in the review of trends in enforcement

70 Percent of states had improved classifications between 2005 and 2015

30 states with improved average classifications

3 states maintained their average classification

8 states had average classifications become less favorable over the term
The Future of BCEGS
Schedule 2016 - 2017

- First Draft Completed
- Risk Engineering
- Testing
- Stakeholder Panels

Items to Consider:
- Modified emphasis on model code age
- Increased emphasis of enforcement and certification
- Credit / debit filing
- Multi-peril focus
- How to deal with existing buildings?
Provides ready access to all pertinent information about our Community Loss Mitigation programs, ranging from background information of a general nature through highly technical resources, responses to frequently asked questions, and ways to contact us directly and quickly.
Thank you!
dthomure@iso.com