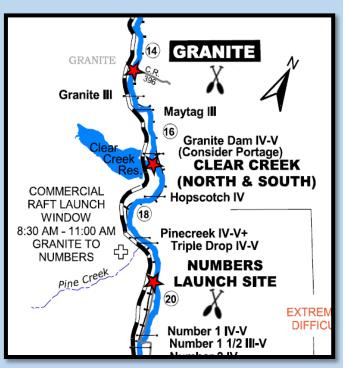
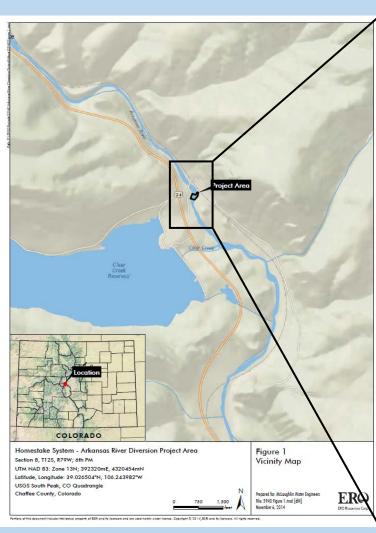
The Homestake Project's Arkansas River Diversion Rehabilitation

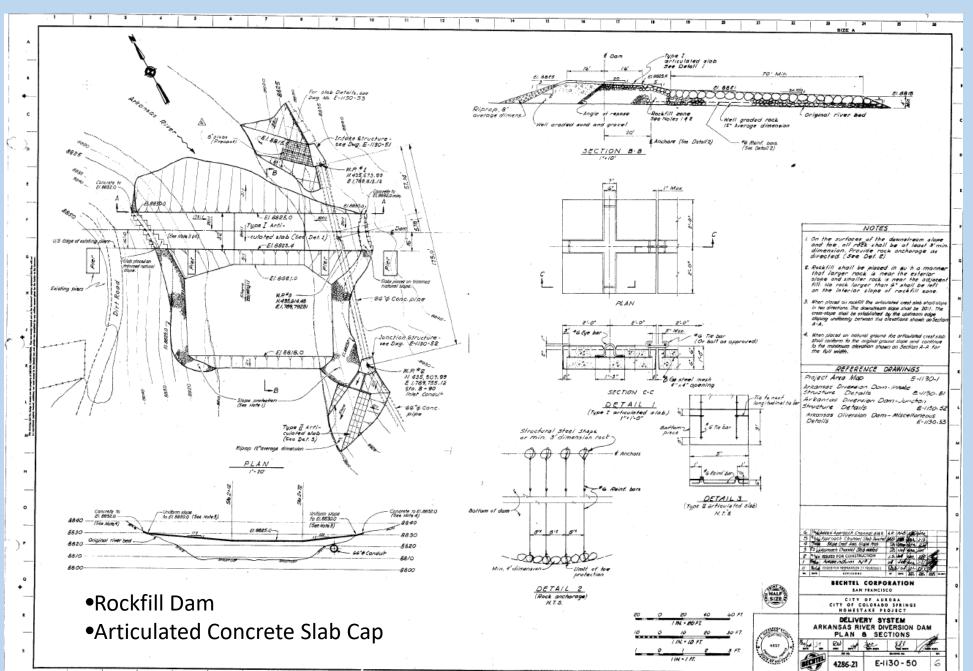
Tiered Hydraulic Modeling Applied to a Recreational, In-Channel Project CASFM 2019 Conference, September 26, 2019 Brian McCormick, P.E., CFM, CSU Sr. Project Engineer


Homestake Arkansas River Diversion

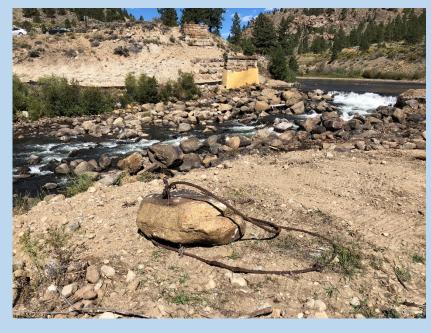
- The Homestake Project is a partnership between the Cities of Colorado Springs and Aurora.
- The Homestake Project moves water from Homestake Creek and other Eagle River tributaries to the Cities via a series of reservoirs, tunnels, pipelines, and the Otero Pump Station north of Buena Vista, CO.
- The Arkansas River Diversion (ARD) constructed c. 1965
 - ARD was the original intake for the Otero Pump Station
 - In the 1980s, the Intake Pipeline was extended to Twin Lakes (~400' higher) and the ARD became a backup facility
 - The ARD had issues with sediment, debris, and in its deteriorated state, was not a reliable facility
 - The ARD was not designed as a navigable structure and was considered non-navigable in its pre-project condition.
- Design of a repair was challenging due to
 - Site conditions (12-13' of drop and two sharp bends)
 - Multiple Objectives: Intake, Navigability, Fish Passage, Sediment and Debris Management



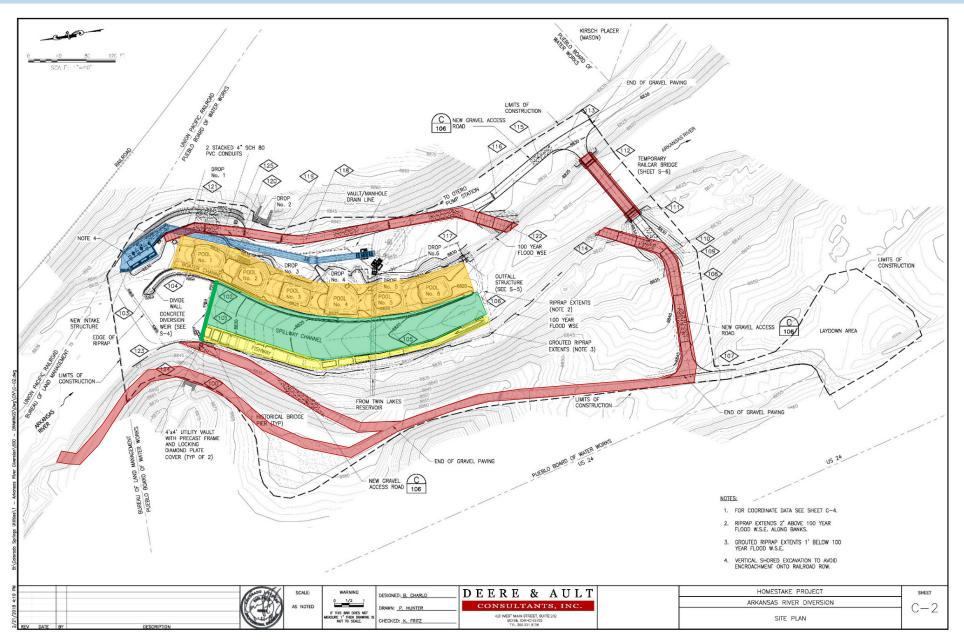
Project Location

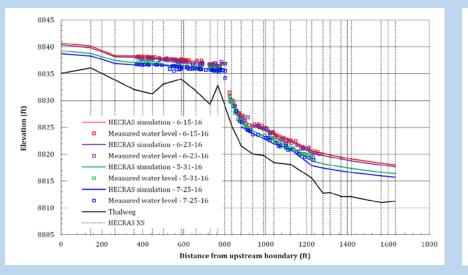


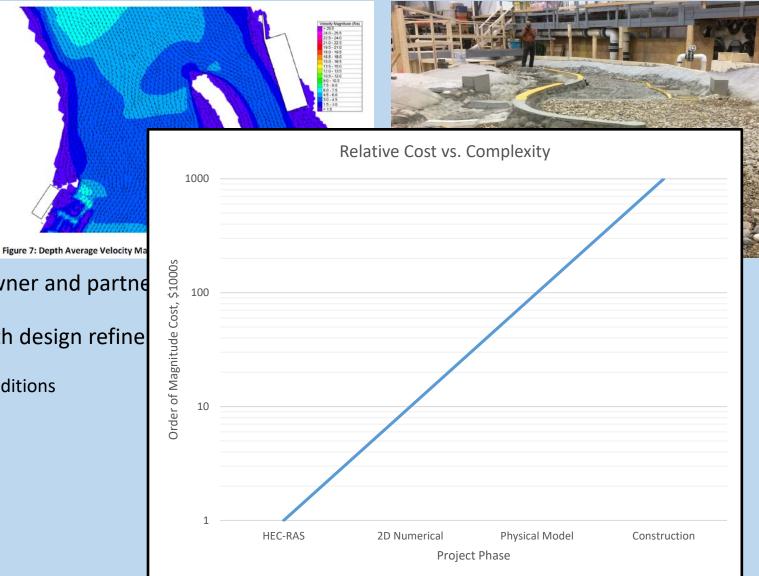
Original Design Intent, Bechtel c. 1965



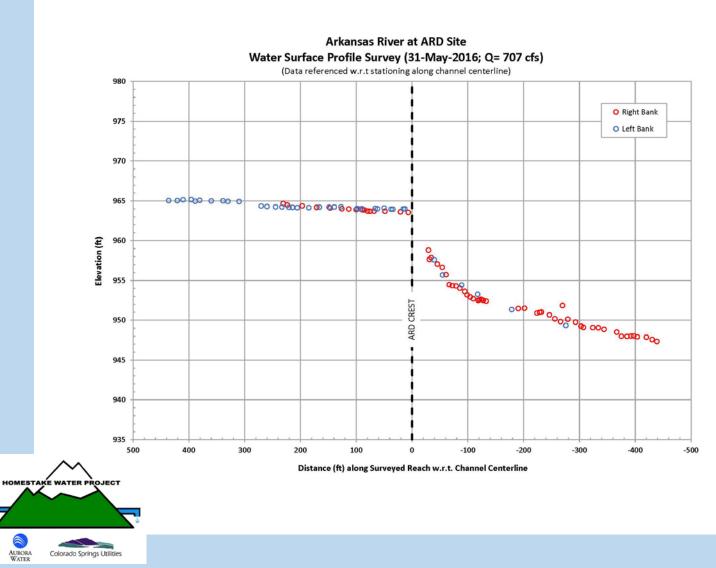

AURORA WATER



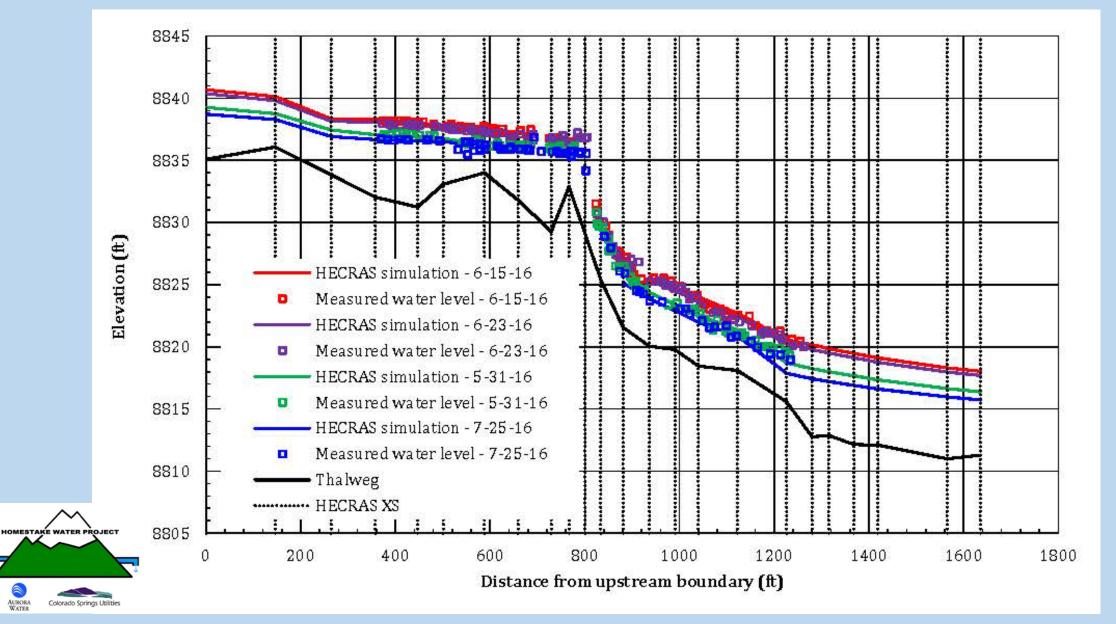



Site Plan and Key Project Elements

- Diversion Weir
- Intake and Pipeline Connection
- Spillway
- Fishway
- Boat Chute
- Site Access (Temporary Bridge)
- Portage Landings and Paths


Design Process

- Objective: satisfy risk tolerance of owner and partne recreational, in-channel project
- Utilized tiered hydraulic modeling with design refine
 - Site Survey, Water Surface Profiles
 - 1D, HEC-RAS to establish boundary conditions
 - Preliminary layout and site grading
 - 2D, TELEMAC-2D
 - Refine layout and site grading
 - 1/12th scale Physical Model
 - Refine layout and site grading
 - Construction
 - Commissioning and Testing
 - Final Adjustments as necessary
 - Open for Public Use


Water Surface Elevation Survey and Profiles

1-Dimensional Hydraulic Modeling

AURORA

2-Dimensional Numerical Modeling

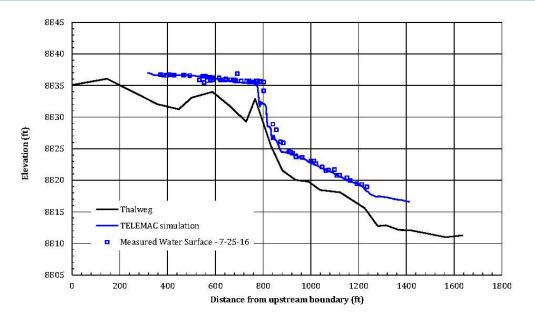


Figure 2: Two Dimensional Simulated Water Surface Profile

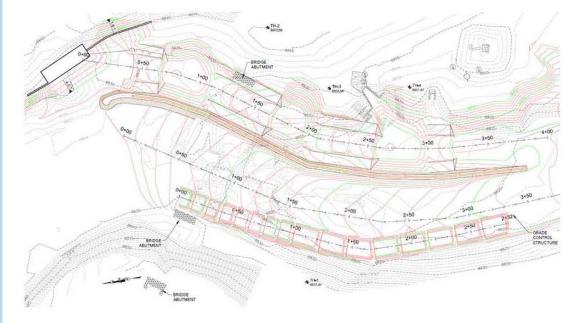
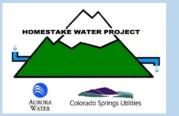



Figure 3: Layout of Initial Conceptual Design on Existing Contours

- Model TELEMAC-2D, Frontend Blue Kenue
- Existing conditions model Mesh size 1-2m
- Bed roughness calibrated to June 2016 observations (1680 cfs)
- First iteration of design, evaluated using 2D model and refined

Boat Chute Refinements

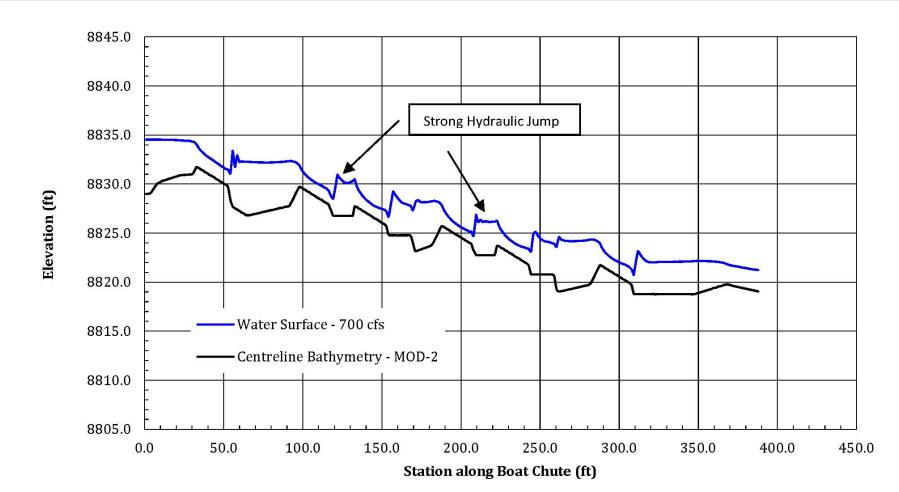
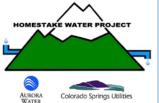


Figure 6: Simulated Boat Chute Water Surface Profile for 700 cfs

Intake refinements from 2D modeling


Scaled Physical Modeling

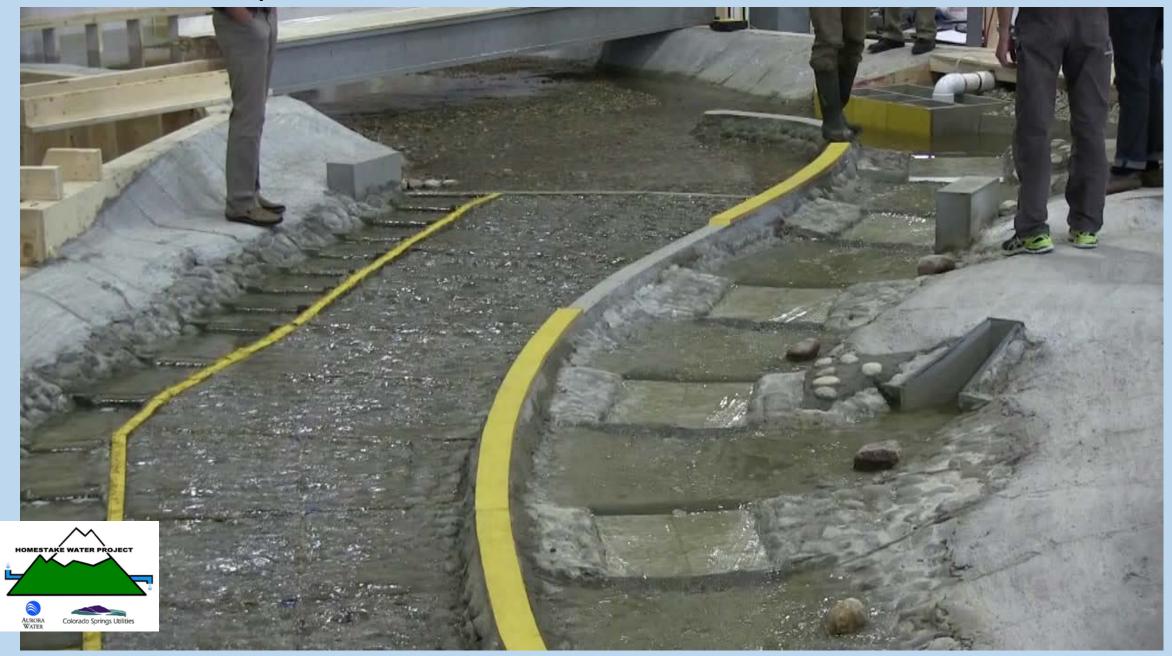
• Similitude: For a free surface (open channel flow) inertial and gravitational forces are dominant. Froude number therefore must be equal between model and prototype.

•
$$Fr = \frac{Fm}{Fp} = 1, F = \frac{U}{\sqrt{gL}}$$

- F = Froude number
- U = characteristic velocity
- g = gravitational acceleration
- L = characteristic length

	Parameter	Relation	Ratio
	Length	Lr	1:12
	Velocity, Time	Lr^1/2	1:3.46
	Discharge	Lr^5/2	1:498.8
	Manning's n	Lr^1/6	1:1.51

Model Construction and Refinement



Hydraulic Performance, 200-4175cfs

AURORA WATER

Refinements: Boat Chute, 700cfs

Hydraulic Performance, Sediment Management, Navigability

Initial Intake Performance

Flow = 700 cfs; Intake withdrawal = 185 cfs

Intake Performance, Scour

Physical Model Results

- Good Hydraulic Performance
- Robust, flushing wave shapes (non-retentive)
- low sensitivity to changes upstream and downstream
- Effective Flow split
- Fish passage in conformance with design criteria
- Spillway and boat chute in conformance with design criteria
- Acceptable self scouring performance in front of intake
- Overall, an effective design that meets all objectives and satisfies risk tolerance.

Physical modeling provided good insight into the performance of the design and allowed the development and testing of multiple improvements to the original design.

Lessons Learned

- Each "D" adds an order of magnitude to the cost
- Scaled physical modeling provided opportunities for refinement / improvement not available from 2D model
- Physical model cost is small compared to the cost (and risk to users) resulting from poor performance and need to make adjustments in the future.
- The tiered approach allowed the Owner to minimize risk (risk to recreational users and risk of unexpected re-construction)

Thanks to:

- Homestake Project (Owner)
 - City of Aurora
 - Colorado Springs Utilities
- SG1 Water Consulting (Owners Rep)

• Design Team

- Deere and Ault (Lead Engineer)
- Recreation Engineering and Planning
- Northwest Hydraulics Corporation
- Partners and Stakeholders
 - CPW, AHRA
 - CWCB
 - USACE
 - Chaffee County
 - Board of Water Works of Pueblo, CO

A New Look to Manning 'n' Values

Craig Jacobson, PE, CFM, ICON Engineering Jennifer Bousselot, Ph.D., Colorado State University

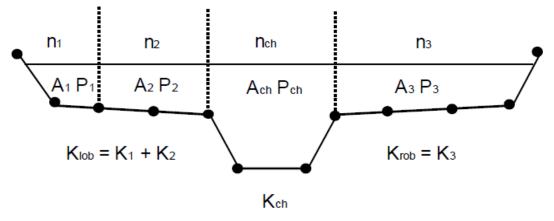
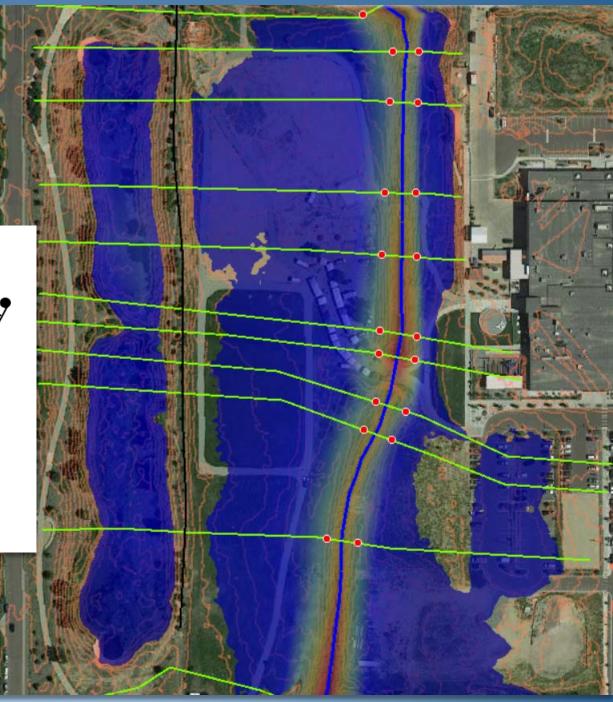
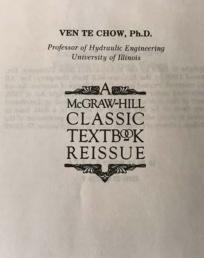



Figure 2-2 HEC-RAS Default Conveyance Subdivision Method



IGINEERING, INC.

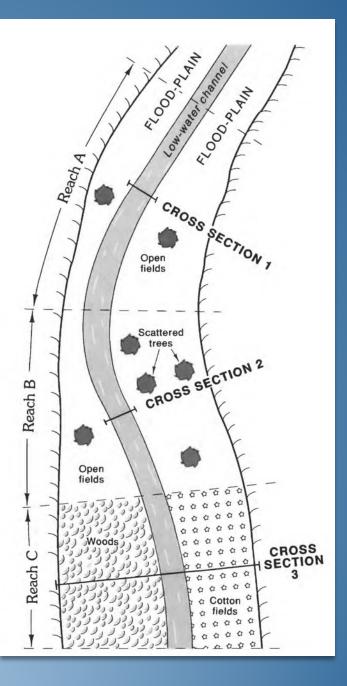
• Chow 1959 – Open Channel **Hydraulics**

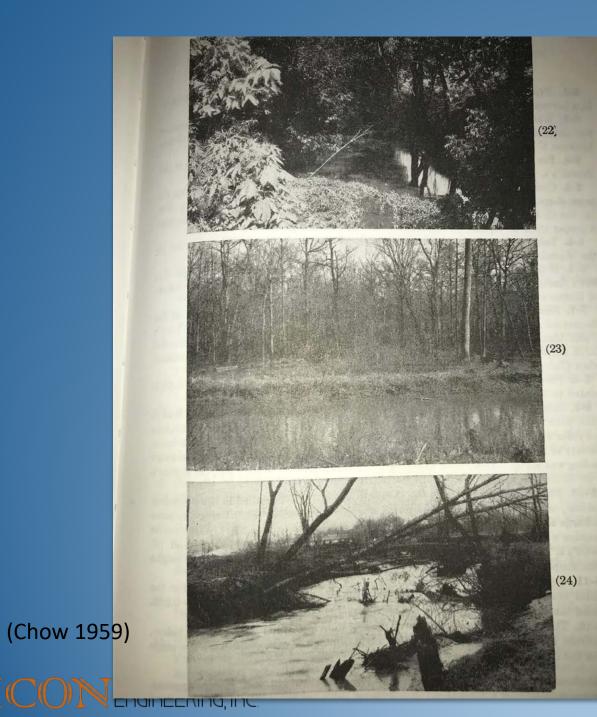
OPEN-CHANNEL HYDRAULICS

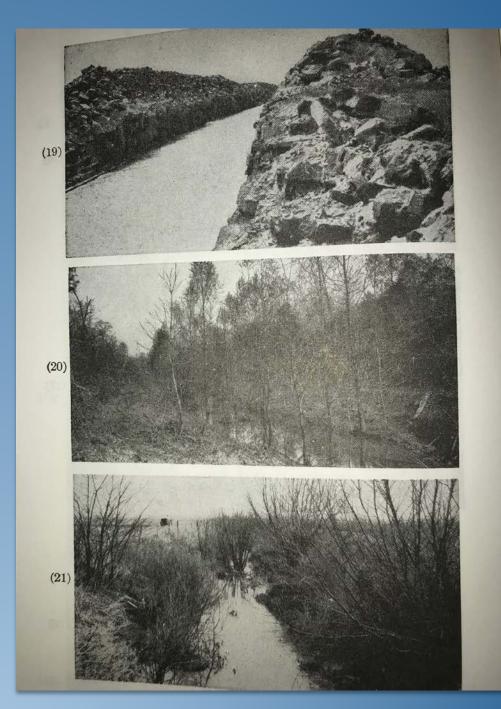
McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto

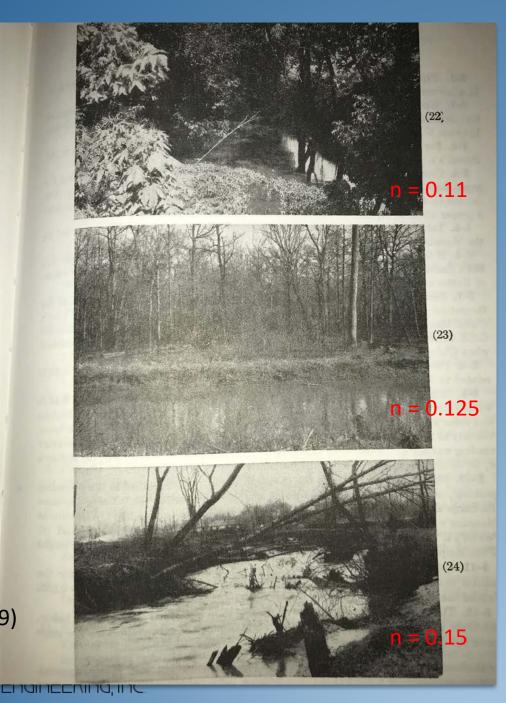
		Type of Channel and Description	Minimum	Normal	Maximum
A. Natu	ral Stree	uns			
	1 Chann				
		aight, full, no rifts or deep pools	0.025	0.030	0.033
 b. Same as above, but more stones and weeds 		0.030	0.035	0.040	
c. Clean, winding, some pools and shoals		0.033	0.040	0.045	
 d. Same as above, but some weeds and stones 		0.035	0.045	0.050	
e. Same as above, lower stages, more ineffective slopes and		0.040	0.048	0.055	
	tions				
		d" but more stones	0.045	0.050	0.060
-		reaches, weedy. deep pools	0.050	0.070	0.080
	-	dy reaches, deep pools, or floodways with heavy stands	0.070	0.100	0.150
oft	timber ar	d brush			
2. Flood	d Plaine				
2. 11000		no brush			
sa.	1.	Short grass	0.025	0.030	0.035
	2	High grass	0.030	0.035	0.050
b.	-	ated areas			
· ·	1.	No crop	0.020	0.030	0.040
	2.	Mature row crops	0.025	0.035	0.045
	3.	Mature field crops	0.030	0.040	0.050
c	Brush	Manue Ben crops			
	1.	Scattered brush, heavy weeds	0.035	0.050	0.070
	2.	Light brush and trees, in winter	0.035	0.050	0.060
	3.	Light brush and trees, in summer	0.040	0.060	0.080
	4.	Medium to dense brush, in winter	0.045	0.070	0.110
	5	Medium to dense brush, in summer	0.070	0.100	0.160
d	Trees	Medium to deuse ordsu, in summer			
ч.	1	Cleared land with tree stumps, no sprouts	0.030	0.040	0.050
	2.	Same as above, but heavy sprouts	0.050	0.060	0.080
	3.	Heavy stand of timber, few down trees, little	0.080	0.100	0.120
	2.	undergrowth, flow below branches			
	4.	Same as above, but with flow into branches	0.100	0.120	0.160
	5.	Dense willows, summer, straight			
	5.	Dense wintows, summer, suargar	0.110	0.150	0.200

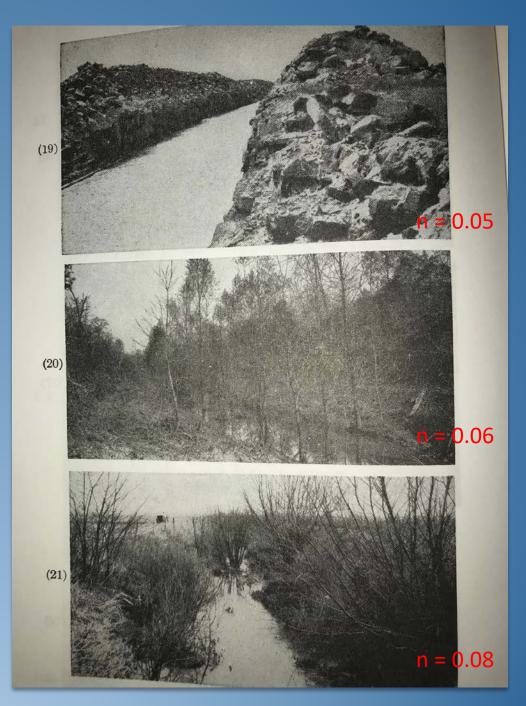
with trees and brush on banks submerged

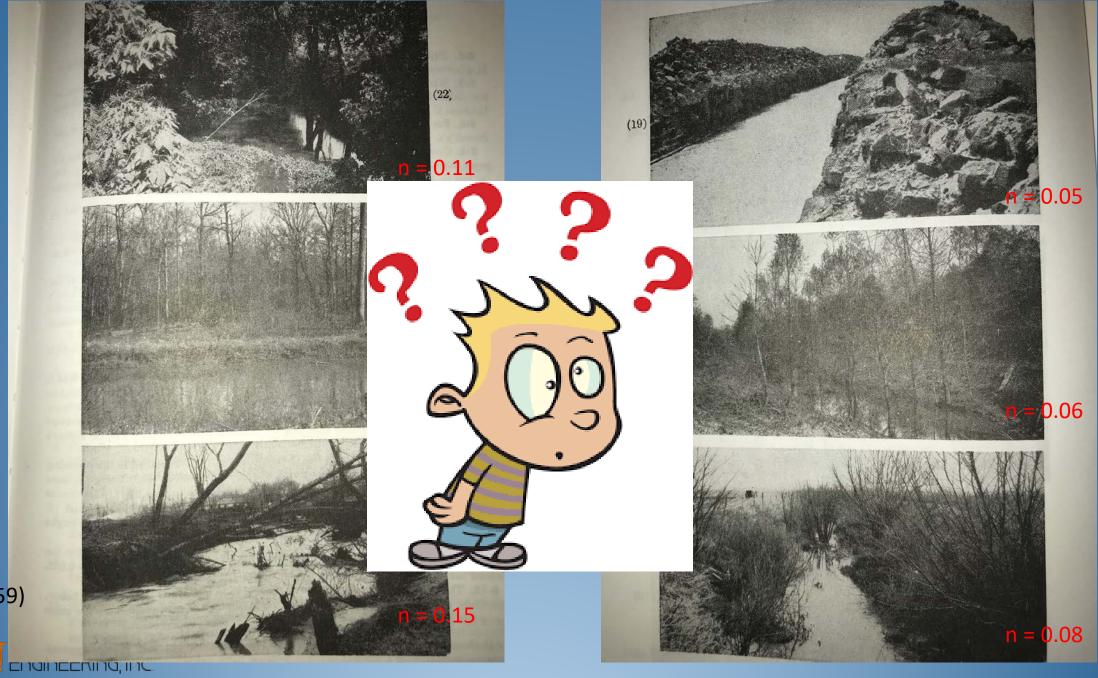

а.	Bottom: gravels, cobbles, and few boulders	0.030	0.040	0.050
ь	Bottom: cobbles with large boulders	0.030	0.040	0.030
0.	Bottom: coooles with large ootilders	0.040	0.050	0.070

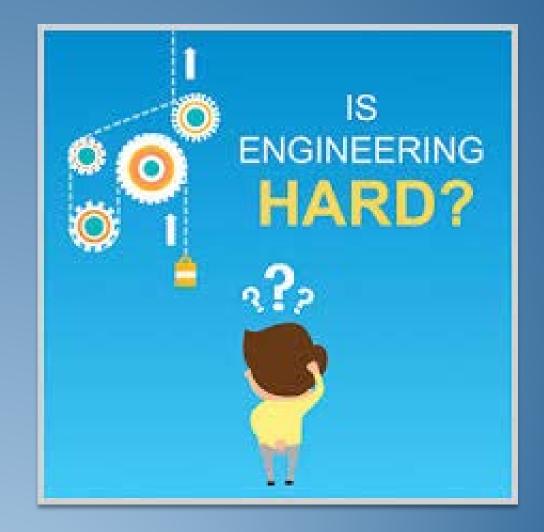

GINEERING, INC.


• Cowans Procedure 1956


$$n = (n_b + n_1 + n_2 + n_3 + n_4)m$$
(3-1)


- Where: n_b = Base value for n for a straight uniform, smooth channel in natural materials
 - n_1 = Value added to correct for surface irregularities
 - n_2 = Value for variations in shape and size of the channel
 - $n_3 =$ Value for obstructions
 - n_4 = Value for vegetation and flow conditions
 - *m* = Correction factor to account for meandering of the channel




(Chow 195<mark>9)</mark>

(Chow 195<mark>9)</mark>

- Engineering Judgement
- Rules of Thumb

Project Approach

- Document Review
 - COE Documentation
 - USGS Documentation
- Identification of Technical Approach
- Field Review

GINEERING, INC.

- Characteristics of vegetation
- Relationship of Manning's n to:
 - Specific local vegetation communities,
 - Guidance for varying inundation depths

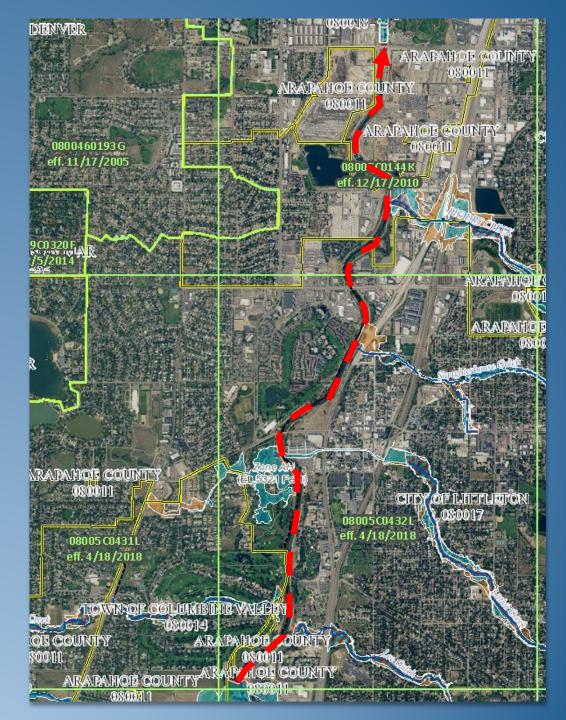
SAMPLE - Vegetation Management Plan

for the South Platte River at Bowles Avenue

November 2013

Prepared By: ICON Engineering, Inc. 8100 S. Akron St., Suite 300 Centennial, CO 80112

Contact: Mr. Craig Jacobson, P.E., CFM



Project Approach

- Document Review
 - COE Documentation
 - USGS Documentation
- Identification of Technical Approach
- Field Review

GINEERING, INC.

- Characteristics of vegetation
- Relationship of Manning's n to:
 - Specific local vegetation communities,
 - Guidance for varying inundation depths

COE TR-00-25 (2000)

• Purpose:

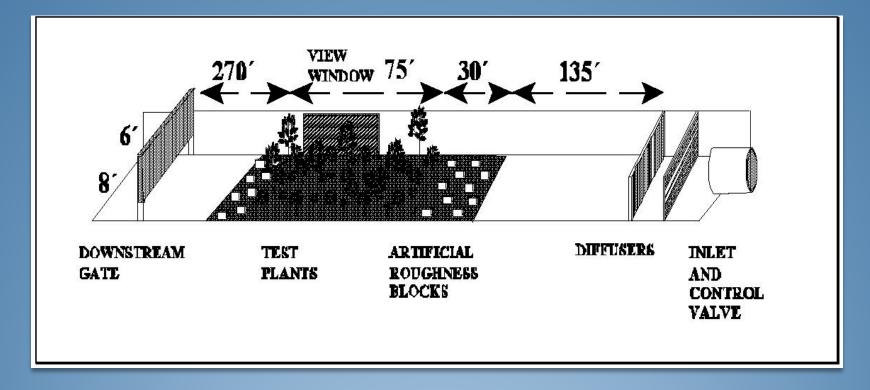
GINEERING, INC.

- Research roughness to use for <u>woody</u> vegetation, shrubs and other environmental or aesthetically desirable plants
- Investigate the effects of <u>flow resistance</u> <u>losses and drag</u> – Utah Water Research Lab
- Flume results from more than <u>220</u> <u>experiments and 20 plant species</u>
- Established equations as a function of slope and depth

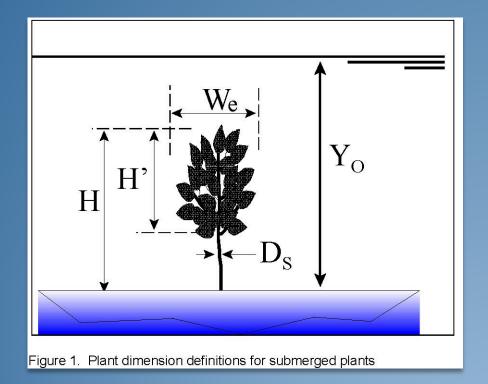
ERDC/CHL TR-00-25

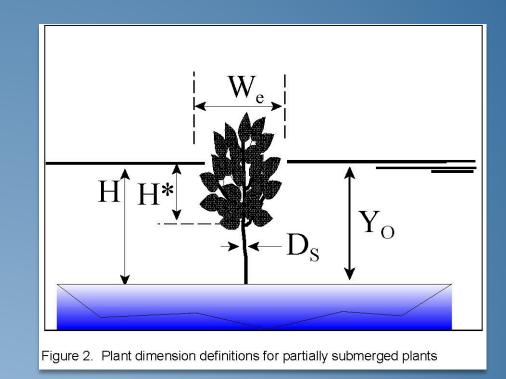
Determination of Resistance Due to Shrubs and Woody Vegetation

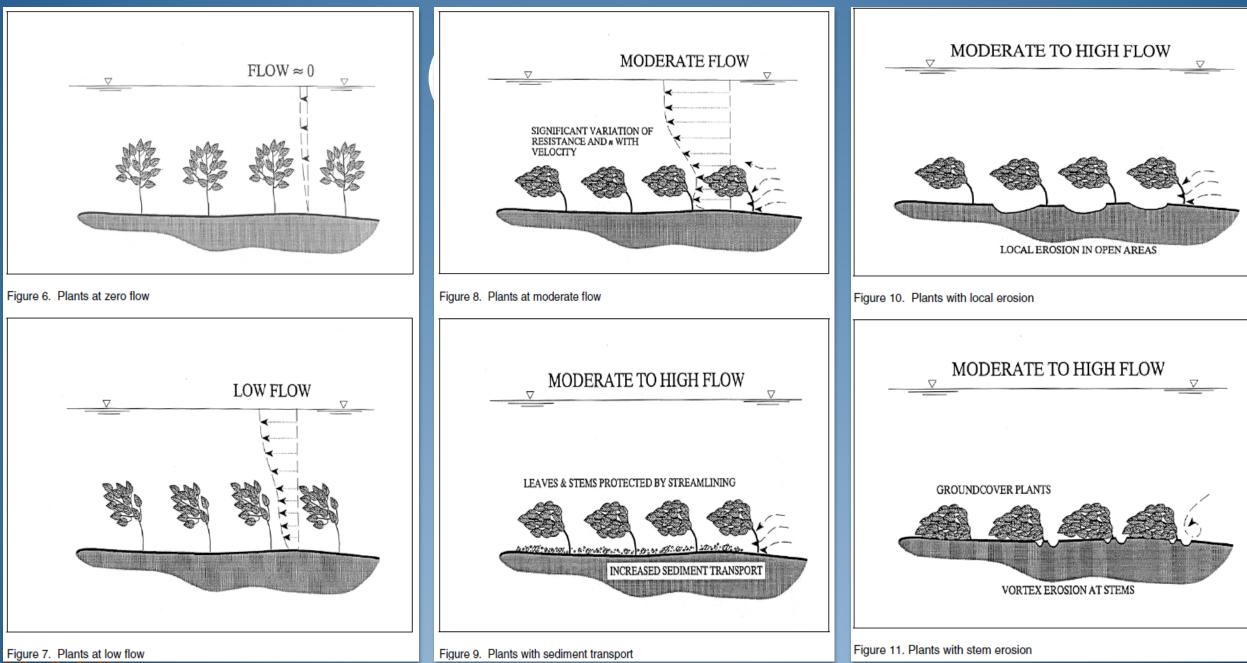
Gary E. Freeman, William J. Rahmeyer, and Ronald R. Copeland October 2000



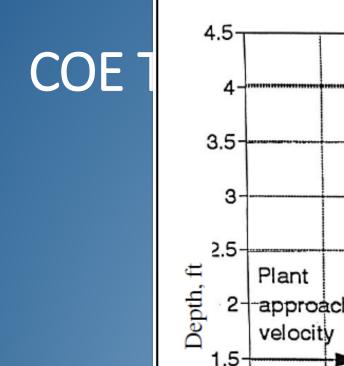
 \mathbf{O}

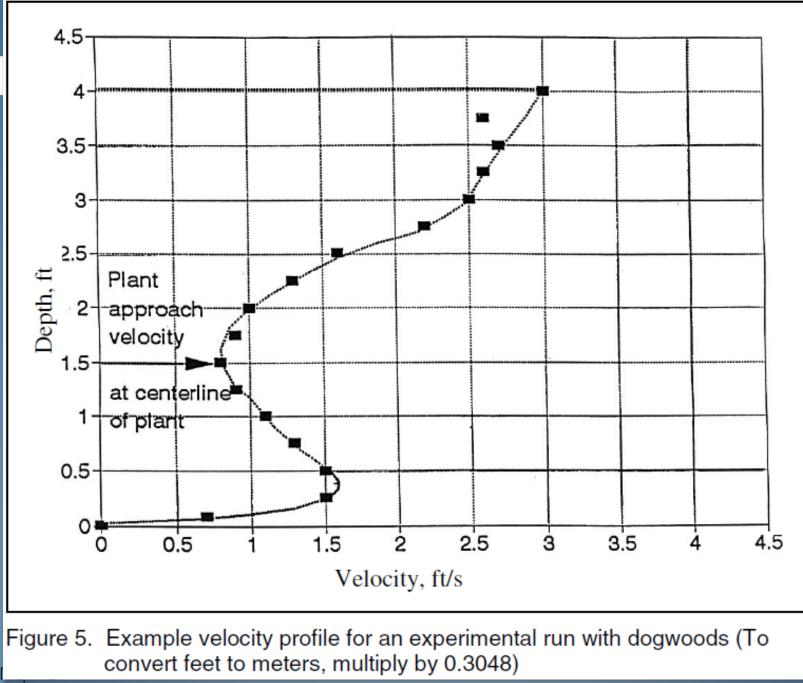

Approved for public release; distribution is unlimited-

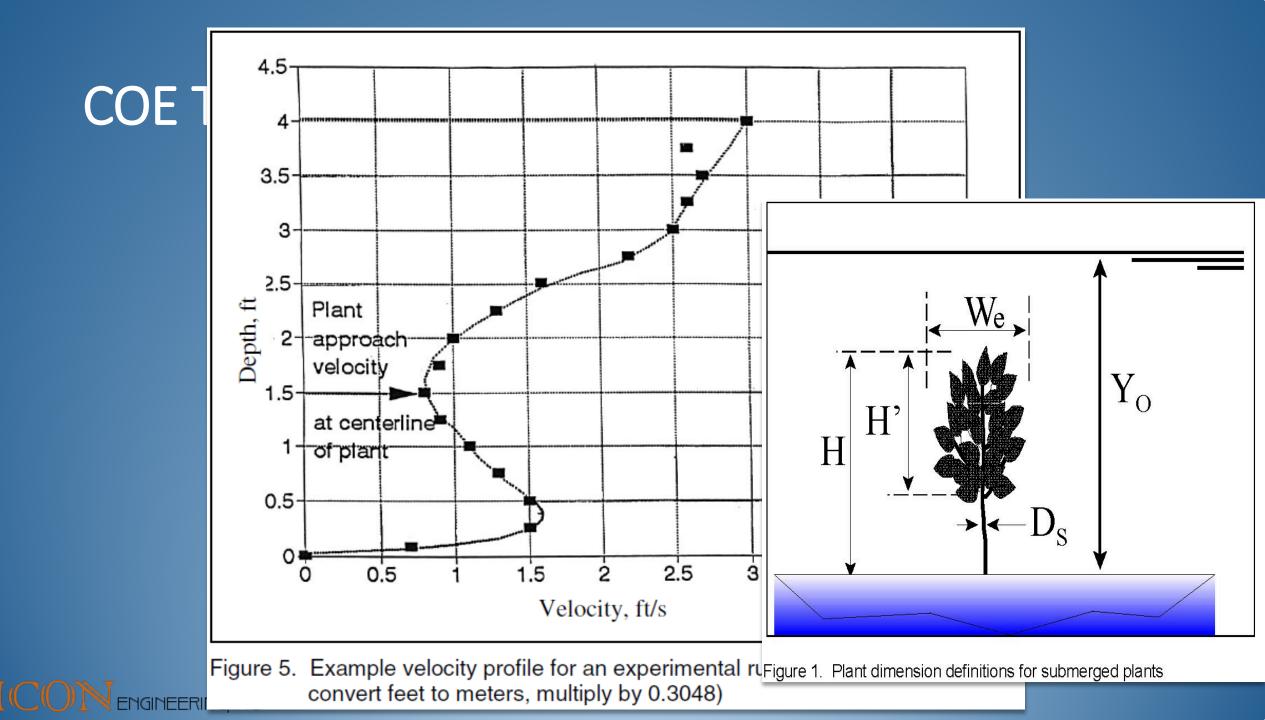

COE TR-00-25 (2000)


ICON ENGINEERING, INC.

COE TR-00-25 (2000)







UN ENGINEERING, INC.

ENGINEERII

COE TR-00-25 (2000) – Regression Equations

Submerged Vegetation

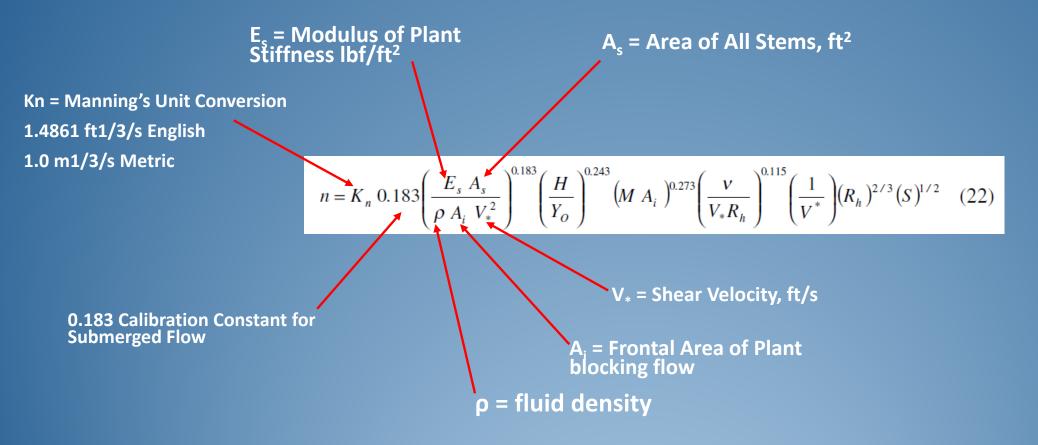
$$n = K_n \ 0.183 \left(\frac{E_s \ A_s}{\rho \ A_i \ V_*^2}\right)^{0.183} \left(\frac{H}{Y_o}\right)^{0.243} \left(M \ A_i \ \right)^{0.273} \left(\frac{v}{V_* R_h}\right)^{0.115} \left(\frac{1}{V^*}\right) (R_h)^{2/3} (S)^{1/2}$$
(22)

• Partially Submerged Vegetation

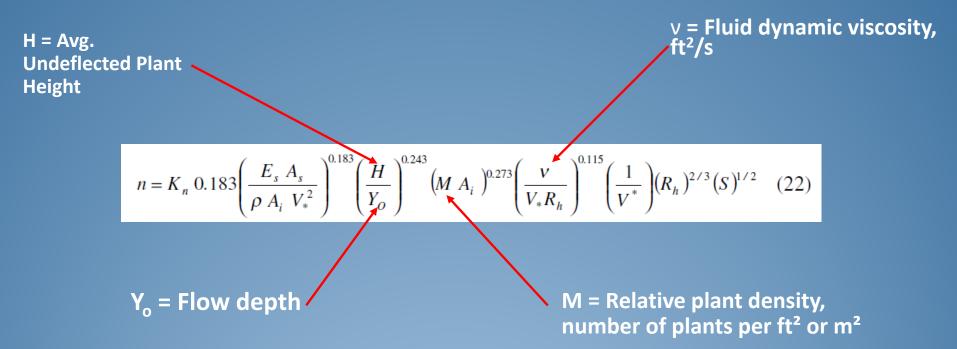
$$n = K_n \, 3.487 E - 05 \left(\frac{E_s \, A_s}{\rho \, A_i^* \, V_*^2}\right)^{0.150} \left(M \, A_i^*\right)^{0.166} \left(\frac{V_* R_h}{v}\right)^{0.622} \left(\frac{R_h^{2/3} \, S^{1/2}}{V_*}\right) \tag{24}$$

Regression Results

$$\frac{V_*}{V} = \frac{\sqrt{g}}{C} = 0.183 \left(\frac{E_s A_s}{\rho A_i V_*^2}\right)^{0.183} \left(\frac{H}{Y_o}\right)^{0.243} (M A_i)^{0.273} \left(\frac{v}{V_* R_h}\right)^{0.115}$$
(21)


MATH!

Manning's Equation
$$V = \frac{1.4}{2}$$


$$V = \frac{1.49 \left(R^{3/3} S^{1/2} \right)}{n}$$

$$n = K_n \ 0.183 \left(\frac{E_s \ A_s}{\rho \ A_i \ V_*^2}\right)^{0.183} \left(\frac{H}{Y_o}\right)^{0.243} \left(M \ A_i\right)^{0.273} \left(\frac{V}{V_* R_h}\right)^{0.115} \left(\frac{1}{V^*}\right) (R_h)^{2/3} (S)^{1/2}$$
(22)

COE TR-00-25 (2000) – Partially Submerged Vegetation

$$n = K_n \, 3.487E - 05 \left(\frac{E_s \, A_s}{\rho \, A_i^* \, V_*^2} \right)^{0.150} \left(M \, A_i^* \right)^{0.166} \left(\frac{V_* R_h}{v} \right)^{0.622} \left(\frac{R_h^{2/3} \, S^{1/2}}{V_*} \right)$$
(24)
Calibration Constant for
Submerged Flow

COE TR-00-25 (2000) – Results

• Key Variables for 'n':

- Hydraulic Variables:
 - R_h = Hydraulic Radius
 - Y_o = Flow Depth
 - S = Slope

GINEERING INC.

- V_{*} = Shear Velocity = (gR_hS)½
- Vegetation Variables
 - E_s = Modulus of Plant Stiffness
 - A_s = Area of All Stems
 - A_i = Frontal Area of Plant blocking flow
 - M = Relative plant density, number of plants per ft²

• Key Variables for 'n':

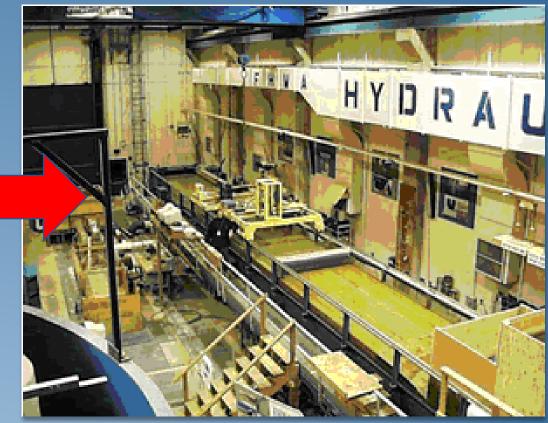
- Hydraulic Variables:
 - R_h = Hydraulic Radius
 - Y_o = Flow Depth
 - S = Slope

IGINEERING, INC.

- V_{*} = Shear Velocity = (gR_hS)¹/₂
- Vegetation Variables
 - E_s = Modulus of Plant Stiffness
 - A_s = Area of All Stems
 - A_i = Frontal Area of Plant blocking flow
 - M = Relative plant density, number of plants per ft²

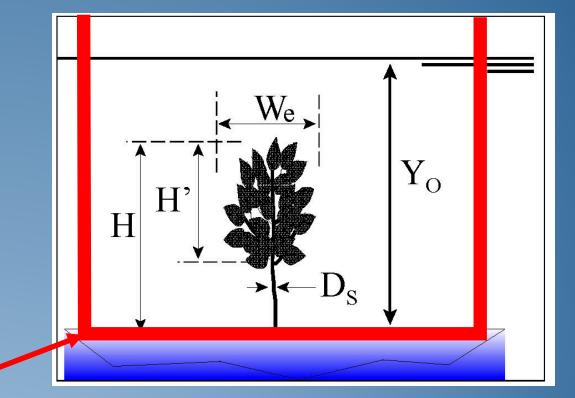
- Key Variables for 'n':
 - Hydraulic Variables:
 - R_h = Hydraulic Radius
 - Y_o = Flow Depth
 - S = Slope

IGINEERING, INC.


- V_{*} = Shear Velocity = (gR_hS)¹/₂
- Vegetation Variables
 - E_s = Modulus of Plant Stiffness
 - A_s = Area of All Stems
 - A_i = Frontal Area of Plant blocking flow
 - M = Relative plant density, number of plants per ft²

- Key Variables for 'n':
 - Hydraulic Variables:
 - R_h = Hydraulic Radius
 - Y_o = Flow Depth
 - S = Slope

ENGINEERING, INC.

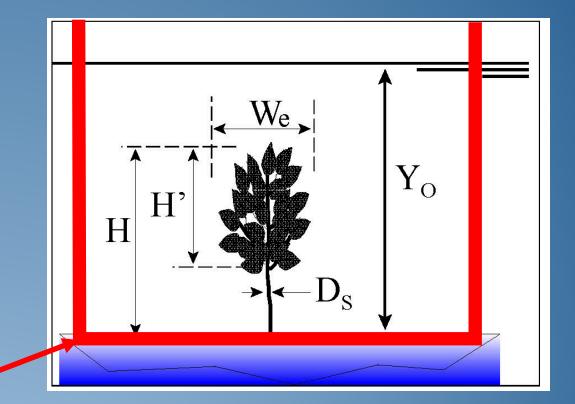

- V_{*} = Shear Velocity = (gR_hS)¹/₂
- Vegetation Variables
 - E_s = Modulus of Plant Stiffness
 - A_s = Area of All Stems
 - A_i = Frontal Area of Plant blocking flow
 - M = Relative plant density, number of plants per ft²

Theoretical Flume

• Assumptions (?)

- Hydraulic Variables:
 - Y_o = Flow Depth
 - W = Width
 - R_h = Hydraulic Radius = A/P
 - S = Slope
 - V_{*} = Shear Velocity = (gR_hS)¹/₂

• Y_o, W, A, P, Rh -


Theoretical Flume

• Assumptions (?)

- Hydraulic Variables:
 - Y_o = Flow Depth
 - W = Width
 - R_i = Hydraulic Radius = A/P
 - S = Slope
 - V_{*} = Shear Velocity = (gR_hS)½

• Y_o, W, A, P, Rh -

Theoretical Flume

• Vegetation Variables

- E_s = Modulus of Plant Stiffness
- A_s = Area of All Stems
- A_i = Frontal Area of Plant blocking flow
- M = Relative plant density

		Plant	Plant	Effective	Blockage	Stem		
Common		Height H,	Width	Height,	Area A	Diameter	Stem	Elasticity
Name	Scientific Name	ft	We, ft	H', ft	Ft ²	Ds, ft	Number	Es, lbf/ft ²
			Larg	ge Flume				
Yellow Twig	Cornus Stolonifera	1.67	0.750	1.08	0.818	0.0313	1	6.706
Dogwood	Flaviramea							
Berried	Sambucus	2.33	1.167	1.67	1.948	0.0313	1	1.099
Elderberry	Racemosa	0.07			0.560		-	
Purpleleaf Euonymus	Euonymus Fortunei Colorata	0.67	0.833	0.67	0.560	0.0208	2	8.648
Red Twig	Cornus Sericea	3.18	1.583	2.50	3.958	0.0833	2	21,308
Dogwood	Contus Sencea	3.10	1.303	2.50	3.850	0.0035	2	21.500
Service Berry	Amelanchier	2.33	0.583	1.67	0.969	0.0208	6	99.436
Yellow Twig	Cornus Stolonifera	2.33	0.833	2.00	1.666	0.0313	2	62.461
Dogwood	Flaviramea							
Mulefat	Baccharis Glutinosa	3.18	0.250	1.67	0.420	0.0420	1	12.430
Alder	Alnus Incana	2.50	0.500	2.33	1.150	0.0260	1	35.513
Valley Elderberry	Sambucus Mexicana	3.18	2.500	3.00	7.503	0.0879	1	34.469
Salt Cedar	Tamarix spp.	5.00	2.000	4.50	9.001	0.1040	1	27.366
Black Willow	Salix Nigra	4.00	1.000	4.00	4.005	0.0630	1	3.134
Red Willow	Salix spp.	2.00	0.500	2.00	1.001	0.0310	1	9.401
Mountain Willow	Salix Monticola	5.00	3.000	4.00	12.003	0.0840	4	7.123
				all Flume				
Yellow Twig Dogwood	Cornus Stolonifera Flaviramea	1.67	0.750	1.08	0.818	0.0313	1	6.706
Purpleleaf Eunonyus	Euonymus Fortunei Colorata	0.67	0.833	0.67	0.560	0.0208	2	8.648
Artic Blue Williow	Salix Purpurea Nana	1.84	1.000	1.67	1.669	0.0417	1	2.486
Norway Maple	Acer Platenoides	2.33	1.000	1.00	1.001	0.0417	1	39,900
Common Privet	Ligustrum Vulgare	2.67	0.833	2.25	1.873	0.0417	1	8.231
Blue Elderberry	Sambucus Canadensis	1.75	1.500	1.33	1.997	0.0833	1	0.549
French Pink Pussywillow	Salix Caprea Pendula	3.00	0.833	0.83	0.700	0.0625	1	2.319
Sycamore	Platenus Acer Ifolia	3.00	0.667	2.75	1.831	0.0333	1	57.448
Western Sand Cherry	Prunis Besseyi	2.43	0.500	1.67	0.829	0.0278	1	60.163
Staghorn Sumac	Rhus Typhina	2.50	0.833	1.00	0.829	0.0417	1	10.612
Sand Bar Willow	Salix exigua	7.15		5.91	7.09	0.0492	1	180
Pacific Willow	Salix lasiandra	7.84	1	6.56	21.31	0.0558	1	207
Lemon's Willow	Salix lemonii	7.0		5.58	4.09	0.0427	1	180
Wild Rose Bush	Rosa spp.	3.87		0.354	11.30	0.0230	1	272

Theoretical Flume?

- Vegetation Variables
 - E_s = Modulus of Plant Stiffness
 - A_s = Area of All Stems
 - A_i = Frontal Area of Plant blocking flow
 - M = Relative plant density,

Theoretical Flume?

- Vegetation Variables
 - E_s = Modulus of Plant Stiffness
 - A_s = Area of All Stems
 - A_i = Frontal Area of Plant blocking flow
 - M = Relative plant density,

Application: South Platte River Basin

- Inventory of native/adapted plant species
 - Visual/pictorial survey (not destructive)
 - Minimum of ¼ mile roundtrip
 - Excluding undesirable non-natives
- 3 sampling locations along the channel
 - 1 Established: South Platte Park
 - 1 Recently restored: Lee Gulch

HEERING INC.

• 1 Disturbed/non-natives: Union Ave.

• Grasses (14), forbs (17), shrubs (16), trees (6)

Grasses (Sample)

Agropyron cristatum, crested wheatgrass*18-36 inchesBouteloua gracilis, blue grama*6-24 inchesBouteloua curtipendula, sideoats grama*12-24 inchesBromus inermis, smooth brome*6-36 inchesBuchloe dactyloides, buffalograss*3-8 inches

Forbs (Sample)

Apocynum cannabinum, Indian hemp12-36Artemisia frigida, fringed sage*6-18 iArtemisia ludoviciana, mountain sage24-36Asclepias incarnata, swamp milkweed*24-36*= recommended species for revegetation efforts.

Mean Height 12-36 inches 6-18 inches 24-36 inches 24-36 inches

Mean Height

Growth Habit bunch grass spreading spreading spreading spreading

Mean Width 12-24 inches 18-24 inches 36-48 inches 24-26 inches Flexibility rigid rigid flexible flexible rigid

Flexibility very flexible very flexible very flexible flexible dense foliage dense foliage dense foliage dense foliage dense foliage

Density

Density sparse foliage dense foliage sparse foliage sparse foliage

Relationship to values in the COE document

- Mean height x width at maturity of grasses and forbs
 - Wide range of sizes due to climate, water availability and competition
- Shrubs and trees can take decades to reach maturity
- Growth habit (branching/suckering) + flexibility = parallel species
- Plant species list was cross-referenced with recommendations from:
 - Native Plant Revegetation Guide for Colorado
 - Woody Plants of South Platte Park

Table 9			
Modulus of Plant S	tiffness for Evaluated I	Plants	
Plant name		E _s /(H/D _s) ^{1.5} N/m²	E _s /(H/D _s) ^{1.5} Ibf/ft ²
Alder	Alnus incana	1.804e+06	3.768e+04
Arctic Blue Willow	Salix purpurea nana	4.091e+05	8.544e+03
Black Willow	Salix nigra	2.930e+05	6.119e+03
Blue Elderberry	Sambucus Canadensis	2.733e+05	5.708e+03
Common Privet	Ligustrum vulgare	7.7040e+05	1.609e+04
Yellow Twig Dogwood	Cornus stolonifera flaviramea	2.550e+06	5.326e+04
Red-osier Dogwood	Cornus Sericea	4.342e+06	9.069e+04
Berried Elderberry	Sambucus racemosa	8.168e+04	1.706e+03
Purpleleaf Euonymus	Euonymus fortunei colorata	2.278e+06	4.758e+04
Mountain Black Willow	Salix monticola	7.430e+05	1.552e+04
Mulefat	Baccharis glutinosa	8.992e+05	1.878e+04
Norway Maple	Acer platenoides	4.569e+06	9.542e+04
French Pink Pussywillow	Salix caprea pendula	3.345e+05	6.986e+03
Red Willow	Salix spp.	8.810e+05	1.840e+04
Salt Cedar	Tamarix spp.	3.930e+06	8.207e+04
Service Berry	Amelanchier	4.003e+06	8.360e+04
Staghorn Sumac	Rhus typhina	1.095e+06	2.288e+04
Sycamore	Platenus acer ifolia	3.244e+06	6.774e+04
Valley Elderberry	Sambucus mexicana	7.672e+06	1.602e+05
Western Sand Cherry	Prunis besseyi	3.567e+06	7.449e+04
Sand Bar Willow	Salix exigua	4.990e+06	1.040e+05
Pacific Willow	Salix lasiandra	5.300e+06	1.120e+05
Lemon's Willow	Salix lemonii	4.090e+06	8.530e+04
Wild Rose Bush	Rosa spp.	6.070e+06	1.250e+05

South Platte River Shrub and Tree Species Shrubs (Sample)

Acer glabrum, Rocky Mountain maple Atriplex canescens, four wing saltbush Cornus sericea, red osier dogwood* Ericameria nauseosa, rubber rabbitbrush Prunus americana, American plum* Trees (Sample)

Acer ginnala, amur maple

Acer negundo, box-elder

Celtis reticulata, netleaf hackberry

Populus angustifolia, narrowleaf cottonwood

*= recommended species for revegetation efforts.

Notes on Parallel Species from Table 9 in COE

between serviceberry and blue elderberry no parallel in table – upland species anyway same species – red osier (a.k.a redtwig) dogwood no parallel in table – upland species anyway western sand cherry

Diamé na ma		E _s /(H/D _s) ^{1.5}	E _s /(H/D _s) ^{1.5}
Plant name		N/m ²	lbf/ft ²
Alder	Alnus incana	1.804e+06	3.768e+04
Arctic Blue Willow	Salix purpurea nana	4.091e+05	8.544e+03
DIACK WIIIOW	Salix nigra	2.930e+05	6.119e+03
Blue Elderberry	Sambucus Canadensis	2.733e+05	5.708e+03
Common Privet	Ligustrum vulgare	7.7040e+05	1.609e+04
Yellow Twig Dogwood	Cornus stolonifera flaviramea	2.550e+06	5.326e+04
Red-osier Dogwood	Cornus Sericea	4.342e+06	9.069e+04
Berried Elderberry	Sambucus racemosa	8.168e+04	1.706e+03
Purpleleaf Euonymus	Euonymus fortunei colorata	2.278e+06	4.758e+04
Mountain Black Willow	Salix monticola	7.430e+05	1.552e+04
Mulefat	Baccharis glutinosa	8.992e+05	1.878e+04
Norway Maple	Acer platenoides	4.569e+06	9.542e+04
rench Pink Pussywillow	Salix caprea pendula	3.345e+05	6.986e+03
Red Willow	Salix spp.	8.810e+05	1.840e+04
Salt Cedar	Tamarix spp.	3.930e+06	8.207e+04
Service Berry	Amelanchier	4.003e+06	8.360e+04
Staghorn Sumac	Rhus typhina	1.095e+06	2.288e+04
Sycamore	Platenus acer ifolia	3.244e+06	6.774e+04
Valley Elderberry	Sambucus mexicana	7.672e+06	1.602e+05
Western Sand Cherry	Prunis besseyi	3.567e+06	7.449e+04
Sand Bar Willow	Salix exigua	4.990e+06	1.040e+05
Pacific Willow	Salix lasiandra	5.300e+06	1.120e+05
Lemon's Willow	Salix lemonii	4.090e+06	8.530e+04
Wild Rose Bush	Rosa spp.	6.070e+06	1.250e+05

be

			Woody P	lants - Flexable (Es	(H/Ds)^1.5) = 8.544	4E^3 lbf/ft^2)			
	Low Density (4'	Canopy, 10% Foliage C	over, 1:125)	Mid Density (4	' Canopy, 25% Folia	age Cover, 1:50)	High Density (4	Canopy, 80% Foli	age Cover, 1:16)
	1' to 3'	3' to 6'	6' & greater	1' to 3'	3' to 6'	6' & greater	1' to 3'	3' to 6'	6' & greater
PLANT FEATURES									
Plant Height (ft)	5	5	5	5	5	5	5	5	5
Undeflected Height of Leaf Mass (H', ft)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Equivalent Ave Plant Width (We, ft)	4	4	4	4	4	4	4	4	4
Frontal Area of Plants (Ai, ft^2)	18	18	18	18	18	18	18	18	18
Number of Stems per Plant (#)	4	4	4	4	4	4	4	4	4
Diameter of Stem (Ds, in)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Area of Stem/plant (As, sqft)	0.005454154	0.005454154	0.005454154	0.005454154	0.005454154	0.005454154	0.005454154	0.005454154	0.005454154
Number of Plants per sqft (M, #)	0.008	0.008	0.008	0.02	0.02	0.02	0.0625	0.0625	0.0625
H/Ds	120	120	120	120	120	120	120	120	120
Modulus of Plant Stiffness Table 9	8.54E+03	8.54E+03	8.54E+03	8.54E+03	8.54E+03	8.54E+03	8.54E+03	8.54E+03	8.54E+03
Modulus of Plant Stiffness (Es, lbf/ft^2)									
(Table 9 multiplied by (H/Ds)^1.5)	1.12E+07	1.12E+07	1.12E+07	1.12E+07	1.12E+07	1.12E+07	1.12E+07	1.12E+07	1.12E+07
HYRAULIC FEATURES									
Depth of Flow (Yo, ft)	2.21	5.92	8.7	2.21	5.92	8.7	2.21	5.92	8.7
Үо/Н	0.442	1.184	1.74	0.442	1.184	1.74	0.442	1.184	1.74
Submerged	NO	YES	YES	NO	YES	YES	NO	YES	YES
Frontal Area of Plants (Ai, ft^2)	18	18	18	18	18	18	18	18	18
Wetted Perimiter of Sub-area (P, ft)	47.02	54.44	60	47.02	54.44	60	47.02	54.44	60
Slope (S, ft/ft)	0.0016	0.0022	0.004	0.0016	0.0022	0.004	0.0016	0.0022	0.004
Flow Area (Qa, ft^2)	94	252	370	94	252	370	94	252	370
Hydrulic Radius (Rh, ft)	1.999149298	4.628949302	6.166666667	1.999149298	4.628949302	6.166666667	1.999149298	4.628949302	6.166666667
Shear Velocity (V*, ft/sec)	0.320930167	0.572638427	0.891216397	0.320930167	0.572638427	0.891216397	0.320930167	0.572638427	0.891216397
Fluid Deisity (ρ, slugs/ft^3)	1.94	1.94	1.94	1.94	1.94	1.94	1.94	1.94	1.94
EsAs/(pAiV*^2)	17031.98162	5349.648977	2208.614537	17031.98162	5349.648977	2208.614537	17031.98162	5349.648977	2208.614537
Frontal Area of Plants Unsubmerged (Ai*,									
ft^2)	8.84	23.68	34.8	8.84	23.68	34.8	8.84	23.68	34.8
EsAs/(pAi*V*^2)	34680.50557	4066.456148	1142.386829	34680.50557	4066.456148	1142.386829	34680.50557	4066.456148	1142.386829
M*Ai	0.144	0.144	0.144	0.36	0.36	0.36	1.125	1.125	1.125
M*Ai*	0.07072	0.18944	0.2784	0.1768	0.4736	0.696	0.5525	1.48	2.175
Dynamic Viscosity (v, ft^2/sec)	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05
V**Rh/v	45827.66552	189336.7321	392559.6035	45827.66552	189336.7321	392559.6035	45827.66552	189336.7321	392559.6035
Mannings n	0.025117198	0.041619316	0.031095716	0.029243492	0.053448136	0.039933574	0.035332498	0.072950222	0.054504485

ICON ENGINEERING, INC.

				Woody Plants - Rig	gid (Es(H/Ds)^1.5) :	= 4.758E^4 lbf/ft^2)			
	Low Density (4'	Canopy, 10% Folia			Canopy, 25% Folia			Canopy, 80% Folia	age Cover, 1:16)
	1' to 3'	3' to 6'	6' & greater	1' to 3'	3' to 6'	6' & greater	1' to 3'	3' to 6'	6' & greater
PLANT FEATURES			_			_			
Plant Height (ft)	5	5	5	5	5	5	5	5	5
Undeflected Height of Leaf Mass (H', ft)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Equivalent Ave Plant Width (We, ft)	4	4	4	4	4	4	4	4	4
Frontal Area of Plants (Ai, ft^2)	18	18	18	18	18	18	18	18	18
Number of Stems per Plant (#)	4	4	4	4	4	4	4	4	4
Diameter of Stem (Ds, in)	1	1	1	1	1	1	1	1	1
Area of Stem/plant (As, sqft)	0.021816616	0.021816616	0.021816616	0.021816616	0.021816616	0.021816616	0.021816616	0.021816616	0.021816616
Number of Plants per sqft (M, #)	0.008	0.008	0.008	0.02	0.02	0.02	0.0625	0.0625	0.0625
H/Ds	60	60	60	60	60	60	60	60	60
Modulus of Plant Stiffness Table 9	4.76E+04	4.76E+04	4.76E+04	4.76E+04	4.76E+04	4.76E+04	4.76E+04	4.76E+04	4.76E+04
Modulus of Plant Stiffness (Es, lbf/ft^2)									
(Table 9 multiplied by (H/Ds)^1.5)	2.21E+07	2.21E+07	2.21E+07	2.21E+07	2.21E+07	2.21E+07	2.21E+07	2.21E+07	2.21E+07
HYRAULIC FEATURES									
Depth of Flow (Yo, ft)	2.21	5.92	8.7	2.21	5.92	8.7	2.21	5.92	8.7
Үо/Н	0.442	1.184	1.74	0.442	1.184	1.74	0.442	1.184	1.74
Submerged	NO	YES	YES	NO	YES	YES	NO	YES	YES
Frontal Area of Plants (Ai, ft^2)	18	18	18	18	18	18	18	18	18
Wetted Perimiter of Sub-area (P, ft)	47.02	54.44	60	47.02	54.44	60	47.02	54.44	60
Slope (S, ft/ft)	0.0016	0.0022	0.004	0.0016	0.0022	0.004	0.0016	0.0022	0.004
Flow Area (Qa, ft^2)	94	252	370	94	252	370	94	252	370
Hydrulic Radius (Rh, ft)	1.999149298	4.628949302	6.166666667	1.999149298	4.628949302	6.166666667	1.999149298	4.628949302	6.166666667
Shear Velocity (V*, ft/sec)	0.320930167	0.572638427	0.891216397	0.320930167	0.572638427	0.891216397	0.320930167	0.572638427	0.891216397
Fluid Deisity (ρ, slugs/ft^3)	1.94	1.94	1.94	1.94	1.94	1.94	1.94	1.94	1.94
EsAs/(pAiV*^2)	134135.3898	42131.16634	17393.94619	134135.3898	42131.16634	17393.94619	134135.3898	42131.16634	17393.94619
Frontal Area of Plants Unsubmerged (Ai*,									
ft^2)	8.84	23.68	34.8	8.84	23.68	34.8	8.84	23.68	34.8
EsAs/(pAi*V*^2)	273126.3593	32025.37982	8996.868718	273126.3593	32025.37982	8996.868718	273126.3593	32025.37982	8996.868718
M*Ai	0.144	0.144	0.144	0.36	0.36	0.36	1.125	1.125	1.125
M*Ai*	0.07072	0.18944	0.2784	0.1768	0.4736	0.696	0.5525	1.48	2.175
Dynamic Viscosity (v, ft^2/sec)	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05
V**Rh/v	45827.66552	189336.7321	392559.6035	45827.66552	189336.7321	392559.6035	45827.66552	189336.7321	392559.6035
Mannings n	0.034230475	0.060717495	0.045364849	0.039853913	0.077974298	0.058258204	0.048152193	0.106425458	0.079515382

			w	oody Plants - Very	Rigid (Es(H/Ds)^1.	5) = 1.25E^5 lbf/ft^	2)		
	Low Density (4'	Canopy, 10% Folia	ge Cover, 1:125)	Mid Density (4	Canopy, 25% Folia	age Cover, 1:50)	High Density (4	Canopy, 80% Folia	age Cover, 1:16)
	1' to 3'	3' to 6'	6' & greater	1' to 3'	3' to 6'	6' & greater	1' to 3'	3' to 6'	6' & greater
PLANT FEATURES									
Plant Height (ft)	5	5	5	5	5	5	5	5	5
Undeflected Height of Leaf Mass (H', ft)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Equivalent Ave Plant Width (We, ft)	4	4	4	4	4	4	4	4	4
Frontal Area of Plants (Ai, ft^2)	18	18	18	18	18	18	18	18	18
Number of Stems per Plant (#)	2	2	2	2	2	2	2	2	2
Diameter of Stem (Ds, in)	2	2	2	2	2	2	2	2	2
Area of Stem/plant (As, sqft)	0.043633231	0.043633231	0.043633231	0.043633231	0.043633231	0.043633231	0.043633231	0.043633231	0.043633231
Number of Plants per sqft (M, #)	0.008	0.008	0.008	0.02	0.02	0.02	0.0625	0.0625	0.0625
H/Ds	30	30	30	30	30	30	30	30	30
Modulus of Plant Stiffness Table 9	1.25E+05	1.25E+05	1.25E+05	1.25E+05	1.25E+05	1.25E+05	1.25E+05	1.25E+05	1.25E+05
Modulus of Plant Stiffness (Es, lbf/ft^2)									
(Table 9 multiplied by (H/Ds)^1.5)	2.05E+07	2.05E+07	2.05E+07	2.05E+07	2.05E+07	2.05E+07	2.05E+07	2.05E+07	2.05E+07
HYRAULIC FEATURES									
	0.01	5.92	0.7	2.21	5.92	8.7	2.21	5.00	8.7
Depth of Flow (Yo, ft)	2.21		8.7	2.21			2.21	5.92	
Yo/H Submonand	0.442	1.184 YES	1.74	0.442	1.184 YES	1.74	0.442	1.184	1.74
Submerged	NO 18		YES	NO	18	YES	NO	YES	YES 18
Frontal Area of Plants (Ai, ft ²)		18	18	18		18	18	18	
Wetted Perimiter of Sub-area (P, ft)	47.02	54.44	60	47.02	54.44	60	47.02	54.44	60
Slope (S, ft/ft)	0.0016 94	0.0022	0.004 370	0.0016 94	0.0022 252	0.004 370	0.0016	0.0022	0.004 370
Flow Area (Qa, ft^2)		252		94 1.999149298			94	252	
Hydrulic Radius (Rh, ft) Shear Velocity (V*, ft/sec)	1.999149298 0.320930167	4.628949302 0.572638427	6.166666667 0.891216397	0.320930167	4.628949302 0.572638427	6.166666667 0.891216397	1.999149298 0.320930167	4.628949302 0.572638427	6.166666667 0.891216397
Fluid Deisity (p, slugs/ft^3)	1.94	1.94	1.94	1.94	1.94	1.94	1.94	1.94	1.94
EsAs/(pAiV*^2)	249180.4427	78266.16597	32312.36155	249180.4427	78266.16597	32312.36155	249180.4427	78266.16597	32312.36155
Frontal Area of Plants Unsubmerged (Ai*,	243100.4427	78200.10557	32312.30133	243180.4427	78200.10337	32312.30133	243180.4427	78200.10337	32312.30133
ft^2)	8.84	23.68	34.8	8.84	23.68	34.8	8.84	23.68	34.8
EsAs/(ρAi*V*^2)	507380.992	59492.86265	16713.29046	507380.992	59492.86265	16713.29046	507380.992	59492.86265	16713.29046
M*Ai	0.144	0.144	0.144	0.36	0.36	0.36	1.125	1.125	1.125
M*Ai*	0.07072	0.18944	0.2784	0.1768	0.4736	0.696	0.5525	1.48	2.175
Dynamic Viscosity (v, ft^2/sec)	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05
V**Rh/v	45827.66552	189336.7321	392559.6035	45827.66552	189336.7321	392559.6035	45827.66552	189336.7321	392559.6035
Mannings n	0.037562848	0.068004157	0.050809051	0.043733733	0.087331936	0.065249729	0.05283986	0.119197499	0.089057965

			Fo	rbes Plants - Flexab	le (Es(H/Ds)^1.5) = 8	3.544E^3 lbf/ft^2)			
	Low Density (2	' Canopy, 10% Foliag	ge Cover, 1:31)	Mid Density (2	Canopy, 25% Foliag	ge Cover, 1:13)	High Density (2	2' Canopy, 80% Foli	age Cover, 1:4)
	1' to 3'	3' to 6'	6' & greater	1' to 3'	3' to 6'	6' & greater	1' to 3'	3' to 6'	6' & greater
PLANT FEATURES									
Plant Height (ft)	3	3	3	3	3	3	3	3	3
Undeflected Height of Leaf Mass (H', ft)	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25
Equivalent Ave Plant Width (We, ft)	2	2	2	2	2	2	2	2	2
Frontal Area of Plants (Ai, ft^2)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Number of Stems per Plant (#)	4	4	4	4	4	4	2	2	2
Diameter of Stem (Ds, in)	0.25	0.25	0.25	0.5	0.5	0.5	1	1	1
Area of Stem/plant (As, sqft)	0.001363538	0.001363538	0.001363538	0.005454154	0.005454154	0.005454154	0.010908308	0.010908308	0.010908308
Number of Plants per sqft (M, #)	0.032258065	0.032258065	0.032258065	0.076923077	0.076923077	0.076923077	0.25	0.25	0.25
H/Ds	144	144	144	72	72	72	36	36	36
Modulus of Plant Stiffness Table 9	8.54E+03	8.54E+03	8.54E+03	8.54E+03	8.54E+03	8.54E+03	8.54E+03	8.54E+03	8.54E+03
Modulus of Plant Stiffness (Es, lbf/ft^2)									
(Table 9 multiplied by (H/Ds)^1.5)	1.48E+07	1.48E+07	1.48E+07	5.22E+06	5.22E+06	5.22E+06	1.85E+06	1.85E+06	1.85E+06
, ,,,,,,,									
HYRAULIC FEATURES									
Depth of Flow (Yo, ft)	2.21	5.92	8.7	2.21	5.92	8.7	2.21	5.92	8.7
Үо/Н	0.736666667	1.973333333	2.9	0.736666667	1.973333333	2.9	0.736666667	1.973333333	2.9
Submerged	NO	YES	YES	NO	YES	YES	NO	YES	YES
Frontal Area of Plants (Ai, ft^2)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Wetted Perimiter of Sub-area (P, ft)	47.02	54.44	60	47.02	54.44	60	47.02	54.44	60
Slope (S, ft/ft)	0.0016	0.0022	0.004	0.0016	0.0022	0.004	0.0016	0.0022	0.004
Flow Area (Qa, ft^2)	94	252	370	94	252	370	94	252	370
Hydrulic Radius (Rh, ft)	1.999149298	4.628949302	6.166666667	1.999149298	4.628949302	6.166666667	1.999149298	4.628949302	6.166666667
Shear Velocity (V*, ft/sec)	0.320930167	0.572638427	0.891216397	0.320930167	0.572638427	0.891216397	0.320930167	0.572638427	0.891216397
Fluid Deisity (ρ, slugs/ft^3)	1.94	1.94	1.94	1.94	1.94	1.94	1.94	1.94	1.94
EsAs/(pAiV*^2)	22389.12128	7032.296206	2903.299206	31662.99897	9945.168669	4105.885113	22389.12128	7032.296206	2903.299206
Frontal Area of Plants Unsubmerged (Ai*,									
ft^2)	4.42	11.84	17.4	4.42	11.84	17.4	4.42	11.84	17.4
EsAs/(pAi*V*^2)	22794.35425	2672.747713	750.853243	32236.08492	3779.836065	1061.86684	22794.35425	2672.747713	750.853243
M*Ai	0.14516129	0.14516129	0.14516129	0.346153846	0.346153846	0.346153846	1.125	1.125	1.125
M*Ai*	0.142580645	0.381935484	0.561290323	0.34	0.910769231	1.338461538	1.105	2.96	4.35
Dynamic Viscosity (v, ft^2/sec)	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05
V**Rh/v	45827.66552	189336.7321	392559.6035	45827.66552	189336.7321	392559.6035	45827.66552	189336.7321	392559.6035
Mannings n	0.026496134	0.038732297	0.028938691	0.032241201	0.05231819	0.03908934	0.037222591	0.067741159	0.050612553

ICON ENGINEERING, INC.

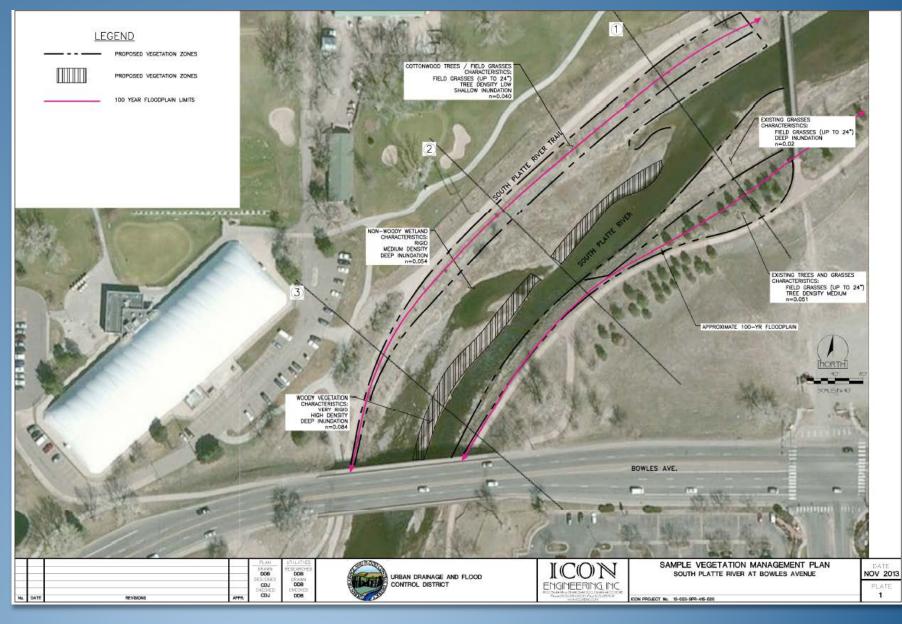
				Forbes Plants - Rig	gid (Es(H/Ds)^1.5) =	= 4.758E^4 lbf/ft^2)			
	Low Density (2'	Canopy, 10% Folia	ge Cover, 1:31)	Mid Density (2	Canopy, 25% Folia	age Cover, 1:13)	High Density (2	2' Canopy, 80% Foli	age Cover, 1:4)
	1' to 3'	3' to 6'	6' & greater	1' to 3'	3' to 6'	6' & greater	1' to 3'	3' to 6'	6' & greater
PLANT FEATURES									
Plant Height (ft)	3	3	3	3	3	3	3	3	3
Undeflected Height of Leaf Mass (H', ft)	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25
Equivalent Ave Plant Width (We, ft)	2	2	2	2	2	2	2	2	2
Frontal Area of Plants (Ai, ft^2)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Number of Stems per Plant (#)	4	4	4	4	4	4	2	2	2
Diameter of Stem (Ds, in)	0.25	0.25	0.25	0.5	0.5	0.5	1	1	1
Area of Stem/plant (As, sqft)	0.001363538	0.001363538	0.001363538	0.005454154	0.005454154	0.005454154	0.010908308	0.010908308	0.010908308
Number of Plants per sqft (M, #)	0.032258065	0.032258065	0.032258065	0.076923077	0.076923077	0.076923077	0.25	0.25	0.25
H/Ds	144	144	144	72	72	72	36	36	36
Modulus of Plant Stiffness Table 9	4.76E+04	4.76E+04	4.76E+04	4.76E+04	4.76E+04	4.76E+04	4.76E+04	4.76E+04	4.76E+04
Modulus of Plant Stiffness (Es, lbf/ft^2)									
(Table 9 multiplied by (H/Ds)^1.5)	8.22E+07	8.22E+07	8.22E+07	2.91E+07	2.91E+07	2.91E+07	1.03E+07	1.03E+07	1.03E+07
,,,,,,,									
HYRAULIC FEATURES									
Depth of Flow (Yo, ft)	2.21	5.92	8.7	2.21	5.92	8.7	2.21	5.92	8.7
Үо/Н	0.736666667	1.973333333	2.9	0.736666667	1.973333333	2.9	0.736666667	1.973333333	2.9
Submerged	NO	YES	YES	NO	YES	YES	NO	YES	YES
Frontal Area of Plants (Ai, ft^2)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Wetted Perimiter of Sub-area (P, ft)	47.02	54.44	60	47.02	54.44	60	47.02	54.44	60
Slope (S, ft/ft)	0.0016	0.0022	0.004	0.0016	0.0022	0.004	0.0016	0.0022	0.004
Flow Area (Qa, ft^2)	94	252	370	94	252	370	94	252	370
Hydrulic Radius (Rh, ft)	1.999149298	4.628949302	6.166666667	1.999149298	4.628949302	6.166666667	1.999149298	4.628949302	6.166666667
Shear Velocity (V*, ft/sec)	0.320930167	0.572638427	0.891216397	0.320930167	0.572638427	0.891216397	0.320930167	0.572638427	0.891216397
Fluid Deisity (ρ, slugs/ft^3)	1.94	1.94	1.94	1.94	1.94	1.94	1.94	1.94	1.94
EsAs/(pAiV*^2)	124680.9914	39161.59334	16167.95134	176325.549	55382.85642	22864.93606	124680.9914	39161.59334	16167.95134
Frontal Area of Plants Unsubmerged (Ai*,									
ft^2)	4.42	11.84	17.4	4.42	11.84	17.4	4.42	11.84	17.4
EsAs/(pAi*V*^2)	126937.6609	14884.05152	4181.366725	179516.9617	21049.22753	5913.345532	126937.6609	14884.05152	4181.366725
M*Ai	0.14516129	0.14516129	0.14516129	0.346153846	0.346153846	0.346153846	1.125	1.125	1.125
M*Ai*	0.142580645	0.381935484	0.561290323	0.34	0.910769231	1.338461538	1.105	2.96	4.35
Dynamic Viscosity (v, ft^2/sec)	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05
V**Rh/v	45827.66552	189336.7321	392559.6035	45827.66552	189336.7321	392559.6035	45827.66552	189336.7321	392559.6035
Mannings n	0.034280488	0.053033211	0.039623565	0.04171341	0.071635348	0.053522082	0.048158292	0.092752855	0.069299948

			F	orbes Plants - Very	Rigid (Es(H/Ds)^1.	5) = 1.25E^5 lbf/ft^	2)		
	Low Density (2'	Canopy, 10% Folia	ge Cover, 1:31)	Mid Density (2	Canopy, 25% Folia	age Cover, 1:13)	High Density (2	2' Canopy, 80% Foli	age Cover, 1:4)
	1' to 3'	3' to 6'	6' & greater	1' to 3'	3' to 6'	6' & greater	1' to 3'	3' to 6'	6' & greater
PLANT FEATURES									
Plant Height (ft)	3	3	3	3	3	3	3	3	3
Undeflected Height of Leaf Mass (H', ft)	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25
Equivalent Ave Plant Width (We, ft)	2	2	2	2	2	2	2	2	2
Frontal Area of Plants (Ai, ft^2)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Number of Stems per Plant (#)	4	4	4	4	4	4	2	2	2
Diameter of Stem (Ds, in)	0.25	0.25	0.25	0.5	0.5	0.5	1	1	1
Area of Stem/plant (As, sqft)	0.001363538	0.001363538	0.001363538	0.005454154	0.005454154	0.005454154	0.010908308	0.010908308	0.010908308
Number of Plants per sqft (M, #)	0.032258065	0.032258065	0.032258065	0.076923077	0.076923077	0.076923077	0.25	0.25	0.25
H/Ds	144	144	144	72	72	72	36	36	36
Modulus of Plant Stiffness Table 9	1.25E+05	1.25E+05	1.25E+05	1.25E+05	1.25E+05	1.25E+05	1.25E+05	1.25E+05	1.25E+05
Modulus of Plant Stiffness (Es, lbf/ft^2)									
(Table 9 multiplied by (H/Ds)^1.5)	2.16E+08	2.16E+08	2.16E+08	7.64E+07	7.64E+07	7.64E+07	2.70E+07	2.70E+07	2.70E+07
,									
HYRAULIC FEATURES									
Depth of Flow (Yo, ft)	2.21	5.92	8.7	2.21	5.92	8.7	2.21	5.92	8.7
Yo/H	0.736666667	1.973333333	2.9	0.736666667	1.973333333	2.9	0.736666667	1.973333333	2.9
Submerged	NO	YES	YES	NO	YES	YES	NO	YES	YES
Frontal Area of Plants (Ai, ft^2)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Wetted Perimiter of Sub-area (P, ft)	47.02	54.44	60	47.02	54.44	60	47.02	54.44	60
Slope (S, ft/ft)	0.0016	0.0022	0.004	0.0016	0.0022	0.004	0.0016	0.0022	0.004
Flow Area (Qa, ft^2)	94	252	370	94	252	370	94	252	370
Hydrulic Radius (Rh, ft)	1.999149298	4.628949302	6.166666667	1.999149298	4.628949302	6.166666667	1.999149298	4.628949302	6.166666667
Shear Velocity (V*, ft/sec)	0.320930167	0.572638427	0.891216397	0.320930167	0.572638427	0.891216397	0.320930167	0.572638427	0.891216397
Fluid Deisity (ρ, slugs/ft^3)	1.94	1.94	1.94	1.94	1.94	1.94	1.94	1.94	1.94
EsAs/(pAiV*^2)	327556.1985	102883.547	42475.70234	463234.4184	145499.3075	60069.71432	327556.1985	102883.547	42475.70234
Frontal Area of Plants Unsubmerged (Ai*,									
ft^2)	4.42	11.84	17.4	4.42	11.84	17.4	4.42	11.84	17.4
EsAs/(ρAi*V*^2)	333484.8175	39102.69946	10985.09543	471618.7517	55299.5679	15535.27094	333484.8175	39102.69946	10985.09543
M*Ai	0.14516129	0.14516129	0.14516129	0.346153846	0.346153846	0.346153846	1.125	1.125	1.125
M*Ai*	0.142580645	0.381935484	0.561290323	0.34	0.910769231	1.338461538	1.105	2.96	4.35
Dynamic Viscosity (v, ft^2/sec)	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05	1.40E-05
V**Rh/v	45827.66552	189336.7321	392559.6035	45827.66552	189336.7321	392559.6035	45827.66552	189336.7321	392559.6035
Mannings n	0.039625051	0.063286894	0.047284566	0.048216816	0.085485653	0.063870286	0.0556665	0.110686116	0.082698717

ICON ENGINEERING, INC.

	Manning's 'n' Valu	le per Inundation Depth	Above Plant Base							
	Shallow	Medium	Deep							
Inundation Depth	(1' to 3')	(3' to 6')	(> 6')							
Tree	es (up to 6" trunk diame	eter)								
Low Density (1:1250 sf)		0.035								
Medium Density (1:314 sf)		0.051								
High Density (1:78 sf)		0.074								
Woody Vegetation (up to 60" tall x 48" wide)										
Stiffness - Flexible										
Low Density (1:125 sf)	0.025	0.042	0.031							
Medium Density (1:50 sf)	0.029	0.053	0.040							
High Density (1:16 sf)	0.035	0.073	0.055							
	Stiffness - Rigid									
Low Density (1:125 sf)	0.034	0.061	0.045							
Medium Density (1:50 sf)	0.040	0.078	0.058							
High Density (1:16 sf)	0.048	0.106	0.080							
	Stiffness - Very Rigid									
Low Density (1:125 sf)	0.038	0.068	0.051							
Medium Density (1:50 sf)	0.044	0.087	0.065							
High Density (1:16 sf)	0.053	0.119	0.089							
Forbes / Non-woo	ody Vegetation (up to 3	6" tall x 24" wide)								
	Stiffness - Flexible									
Low Density (1:125 sf)	0.026	0.039	0.029							
Medium Density (1:50 sf)	0.032	0.052	0.039							
High Density (1:16 sf)	0.037	0.068	0.051							
	Stiffness - Rigid									
Low Density (1:125 sf)	0.034	0.053	0.040							
Medium Density (1:50 sf)	0.042	0.072	0.054							
High Density (1:16 sf)	0.048	0.093	0.069							
Low Donalty (1.125 - 6)	Stiffness - Very Rigid	0.002	0.017							
Low Density (1:125 sf)	0.040	0.063	0.047							
Medium Density (1:50 sf)	0.048	0.085	0.064							
High Density (1:16 sf)	0.056 pland & Wetland Grass	0.111	0.083							
Inundation Death	Shallow (< 1x Height of Grass)	Medium (1x to 2x Ht. of Grass)	Deep (>2x Height of Grass)							
Short Turf Grasses										
Field Grasses (Up to 24" Height)	0.060	0.035	0.010							
Field Grasses (Greater than 24" Height)	0.100	0.050	0.025							

TR-00-25
Computation


	Manning's 'n' Valu	e per Inundation Depth	Above Plant Base				
	Shallow	Medium	Deep				
Inundation Depth	(1' to 3')	(3' to 6')	(> 6')				
Tree	es (up to 6" trunk diame	ter)					
Low Density (1:1250 sf)		0.035					
Medium Density (1:314 sf)		0.051	• •••••••••••••••••••••••••••••••••••				
High Density (1:78 sf)		0.074					
Woody Ve	getation (up to 60" tall >	k 48" wide)					
	Stiffness - Flexible						
Low Density (1:125 sf)	0.025	0.042	0.031				
Medium Density (1:50 sf)	0.029	0.053	0.040				
High Density (1:16 sf)	0.035	0.073	0.055				
	Stiffness - Rigid						
Low Density (1:125 sf)	0.034	0.061	0.045				
Medium Density (1:50 sf)	0.040	0.078	0.058				
High Density (1:16 sf)	0.048	0.106	0.080				
	Stiffness - Very Rigid						
Low Density (1:125 sf)	0.038	0.068	0.051				
Medium Density (1:50 sf)	0.044	0.087	0.065				
High Density (1:16 sf)	0.053	0.119	0.089				
Forbes / Non-woo	ody Vegetation (up to 3	6" tall x 24" wide)					
	Stiffness - Flexible						
Low Density (1:125 sf)	0.026	0.039	0.029				
Medium Density (1:50 sf)	0.032	0.052	0.039				
High Density (1:16 sf)	0.037	0.068	0.051				
	Stiffness - Rigid						
Low Density (1:125 sf)	0.034	0.053	0.040				
Medium Density (1:50 sf)	0.042	0.072	0.054				
High Density (1:16 sf)	0.048	0.093	0.069				
	Stiffness - Very Rigid						
Low Density (1:125 sf)	0.040	0.063	0.047				
Medium Density (1:50 sf)	0.048	0.085	0.064				
High Density (1:16 sf)	0.056	0.111	0.083				
U	pland & Wetland Grass	es					
Shallow Medium Deep							
Inundation Depth	(< 1x Height of Grass)	(1x to 2x Ht. of Grass)	(>2x Height of Grass)				
Short Turf Grasses	0.060	0.035	0.010				
Field Grasses (Up to 24" Height)	0.080	0.040	0.020				
Field Grasses (Greater than 24" Height)	0.100	0.050	0.025				

USGS, Water-supply Paper 2339

Application

Application

LEGEND

Application

Manning's 'n' Value per Inundation Depth Above Plant Base												
	Shallow	Medium	Deep									
Inundation Depth	(1' to 3')	(3' to 6')	(> 6')									
Trees (up to 6" trunk diameter)												
Low Density (1:1250 sf)		0.035										
Medium Density (1:314 sf)		0.051										
High Density (1:78 sf)		0.074										
Woody Vegetation (up to 60" tall x 48" wide)												
Stiffness - Flexible												
Low Density (1:125 sf)	0.025	0.042	0.031									
Medium Density (1:50 sf)	0.029	0.053	0.040									
High Density (1:16 sf)	0.035	0.073	0.055									
	Stiffness - Rigid											
Low Density (1:125 sf)	0.034	0.061	0.045									
Medium Density (1:50 sf)	0.040	0.078	0.058									
High Density (1:16 sf)	0.048	0.106	0.080									
	Stiffness - Very Rigid											
Low Density (1:125 sf)	0.038	0.068	0.051									
Medium Density (1:50 sf)	0.044	0.087	0.065									
High Density (1:16 sf)	0.053	0.119	0.089									
Forbes / Non-wo	ody Vegetation (up to 3	6" tall x 24" wide)										
	Stiffness - Flexible	-										
Low Density (1:125 sf)	0.026	0.039	0.029									
Medium Density (1:50 sf)	0.032	0.052	0.039									
High Density (1:16 sf)	0.037	0.068	0.051									
	Stiffness - Rigid											
Low Density (1:125 sf)	0.034	0.053	0.040									
Medium Density (1:50 sf)	0.042	0.072	0.054									
High Density (1:16 sf)	0.048	0.093	0.069									
	Stiffness - Very Rigid											
Low Density (1:125 sf)	0.040	0.063	0.047									
Medium Density (1:50 sf)	0.048	0.085	0.064									
High Density (1:16 sf)	0.056	0.111	0.083									
U	pland & Wetland Grass	es										
Shallow Medium De												
Inundation Depth	(<1x Height of Grass)	(1x to 2x Ht. of Grass)	(>2x Height of Grass)									
Short Turf Grasses	0.060	0.035	0.010									
Field Grasses (Up to 24" Height)	0.080	0.040	0.020									
Field Grasses (Greater than 24" Height)	0.100	0.050	0.025									

COTTONWOOD TREES / FIELD GRASSES CHARACTERISTICS: FIELD GRASSES (UP TO 24") TREE DENSITY LOW SHALLOW INUNDATION n=0.040

2

South Plant Pier TRANY

South PATTE BIES

NON-WOODY WETLAND CHARACTERISTICS: RIGID MEDIUM DENSITY DEEP INUNDATION n=0.054

Conclusions

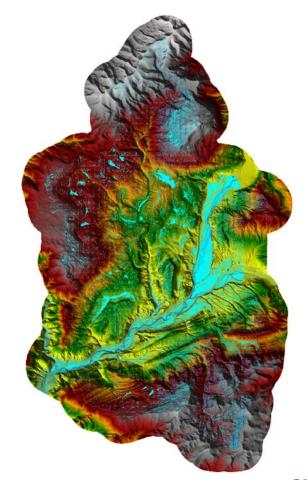
- Interesting or Applicability?
- Helpful or Uneasy?
- Next Steps.....
 - More data for forbes & non-woody species
 - Calibration and confirmation from high flow ever
 - Selection of plants for bioengineering structure/less flow resistance

• Do you need an Owl for Your garden?

Evaluating and Improving Large-Scale 2D H&H Studies in Challenging Mountainous Regions

A Case Study from Garfield County, CO

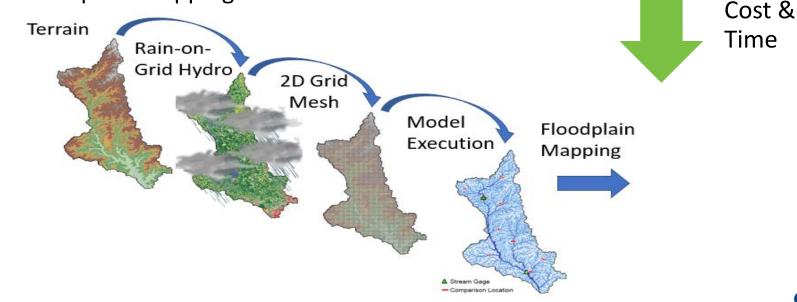
Garrett Sprouse, El, CFM Eli Gruber, PE


September 26, 2019

WATER + ENVIRONMENT + TRANSPORTATION + ENERGY + FACILITIES

Overview

- Define 2D Base Level Engineering (BLE)
- Research and Development (R&D) project scope and background
- R&D methods and results
- Process improvements and decision support tools



2D Base Level Engineering (BLE)

What is BLE?

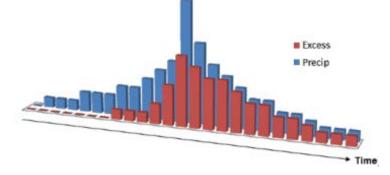
 Watershed-level hydraulic modeling and floodplain mapping

Accuracy &

Efficiency

R&D Scope

- Investigate 2D BLE limitations
- Identify potential solutions
- Test viable solutions to provide proof-of-concept
 - Hydrologic considerations
 - Steep sloped streams
- Develop tools to improve 2D BLE

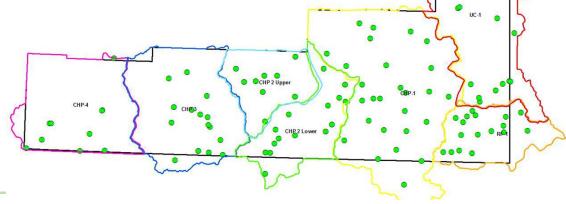


2D BLE Process Constraints

Hydrologic flexibility	 No spatial variability for rain-on-grid inputs within model domain Limited knobs to turn for hydrologic calibration
Modeling and	 RAS Mapper results export and
mapping steep	interpolation limited Balancing accuracy versus efficiency Cost in accuracy while maintaining
slopes	BLE-level efficiency

Hydrologic Flexibility

- Excess hyetograph represents average CN and precip over entire watershed
- Will <u>not</u> represent 100-year runoff for all streams
 - Variable hydrologic drivers and storm distributions (snowmelt, rain on snow, cloudburst, etc.)
- Adjust hydrology to optimize model results


Garfield County Example

- Physical System*:
 - <8,000 ft -> <u>cloudburst storms</u>
 - >8,000 ft -> <u>snowmelt and rain on</u> <u>snow</u>
- <u>Modeled</u>: 24-hour SCS Type II Storm
- On average, each Garfield County, CO model domain has 6,000+ ft elevation difference

Model Area	Within 1-Sep	Within 2-Sep	Outside 2-Sep
UC-1	69%	31%	0%
RF-1	76%	24%	0%
CHP-1	81%	19%	0%
CHP-2 (Lower)	73%	27%	0%
CHP-2 (Upper)	100%	0%	0%
CHP-3	88%	12%	0%
CHP-4	93%	7%	0%

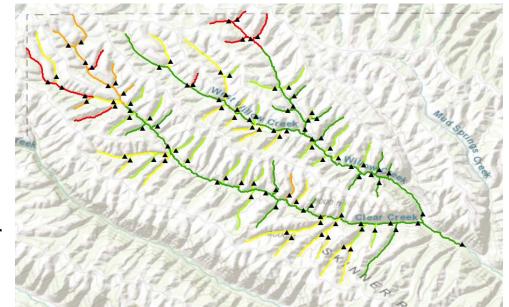
SEP +/- 35% to +/- 75%

*Per Garfield County, CO FIS (080205V001A)

R&D Investigation

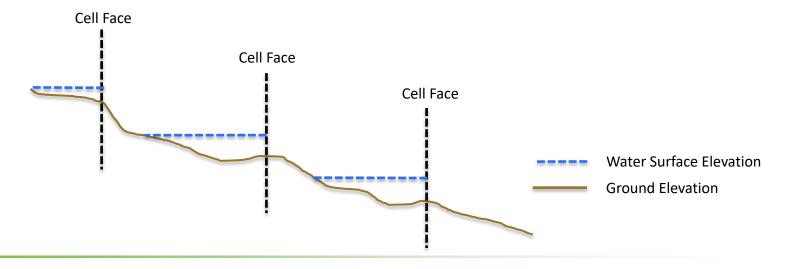
- Opportunities to improve results?
 - Averaging rain-on-grid parameters over different scales

			Discharge at Gage (cfs)							
Scenario Test	CN	Excess Precip (in)	USGS 100yr	Scenario Test	Difference from USGS 100yr	% Difference from USGS 100yr				
Original CN, BLE Precip	66.48	2.92	707	1,079	372	52.6%				
Calibrated CN, BLE Precip	67.48	2.92	707	-	-	-				
HUC8 CN, HUC8 Precip	69.72	2.72	707	634	-73	-10.3%				
HUC10 CN, HUC10 Precip	64.43	2.94	707	370	-337	-47.7%				
HUC12 CN, HUC12 Precip	57.38	3.06	707	61	-646	-91.4%				
Local CN, Local Precip	57.44	3.16	707	73	-634	-89.7%				

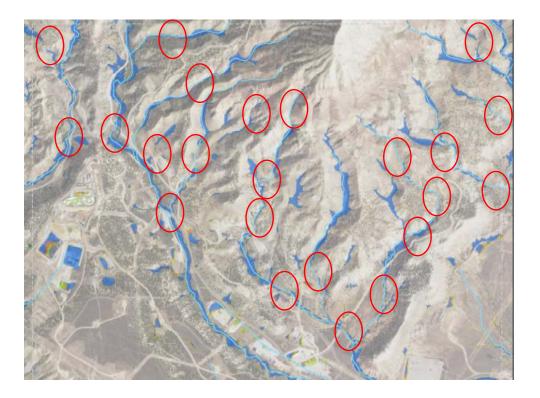

Model Area Averaged Values
Calibrated BLE Values
Variable CN, Variable Precip

** Generic rain on grid inputs aren't representative of the physical system

8

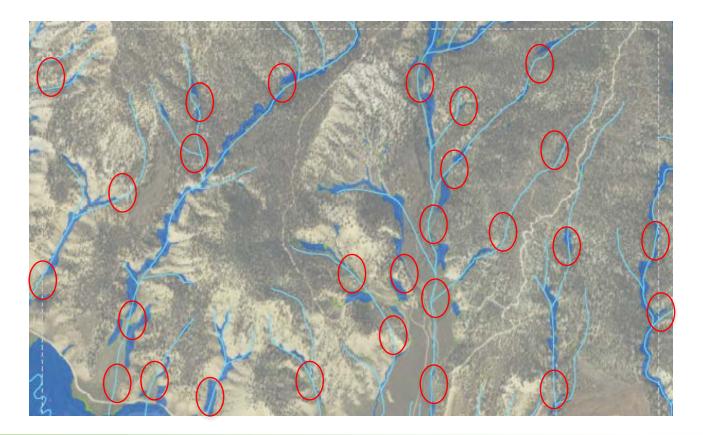

Findings

- A single stream within a watershed will require calibration
- Really need spatially variable parameters to accomplish more accurate hydrology across the watershed
- More data for optimization process (i.e., calculated 100-yr flows) = better watershedwide representation

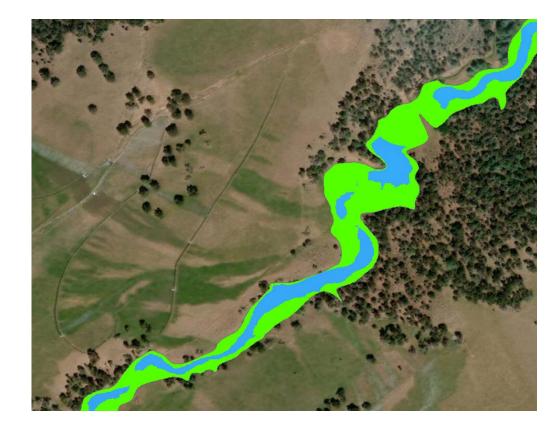


Floodplain Connectivity Issues

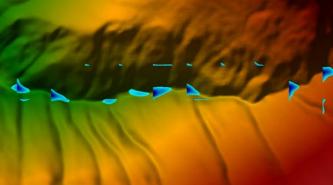
- Steep slopes cause "stairstep mapping"
- HEC-RAS fills lowest elevations of a cell first
- Reducing cell size improves connectivity computational cost

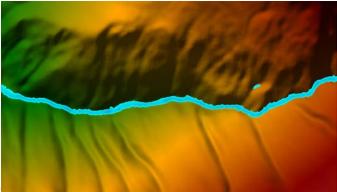


Floodplain Connectivity Issues

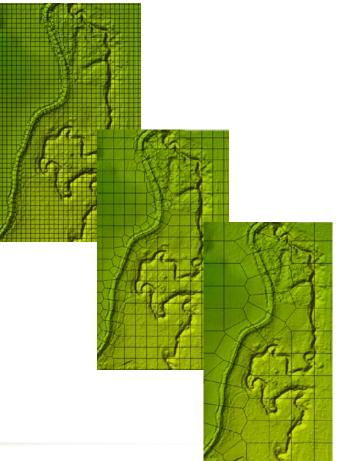

Floodplain Connectivity Issues

Solutions


- Improve mapping interpolation methods
 - May overestimate floodplain
- Reduce grid cell size
 - Computational cost (cell size vs. run time)
 - Cell alignment


Effects of Cell Size Reduction/Alignment

Before



Methodology

- Can we determine what grid cell size produces mappable results
- Tested variable grid cell sizes, slopes, and discharges relationship to floodplain connectivity
 - Discharges (cfs): 10, 50, 100, 500, 1000, 5000
 - Grid Cell Sizes (ft): 10, 20, 50, 100, 200
 - Basins: 15 in total
 - Avg. Stream Slope: Ranging from 0.5 15.5 %

Slope and Discharge to Determine Grid Cell Size

Slope %	Grid Cell Size (ft)							Slope % Size (ft)		Discharge (cfs)					
		10	50	100	500	1,000	5,000		5120 (11)	10	50 100 500	1,000	5,000		
0-2	10	Yes	Yes	Yes	Yes	Yes	Yes		10	No	Yes	Yes	Yes	Yes	Yes
	20	Yes	Yes	Yes	Yes	Yes	Yes	10-12	20	No	No	No	Yes	Yes	Yes
	50	No	Yes	Yes	Yes	Yes	Yes		50	No	No	No	No	No	Yes
	100	No	No	No	Yes	Yes	Yes		100	No	No	No	No	No	No
	200	No	No	No	No	Yes	Yes		200	No	No	No	No	No	No
	10	No	Yes	Yes	Yes	Yes	Yes		10	No	No	No	Yes	Yes	Yes
	20	No	No	No	Yes	Yes	Yes		20	No	No	No	No	No	Yes
6-8	50	No	No	No	No	Yes	Yes	14-16	50	No	No	No	No	No	No
	100	No	No	No	No	No	Yes		100	No	No	No	No	No	No
	200	No	No	No	No	No	No		200	No	No	No	No	No	No

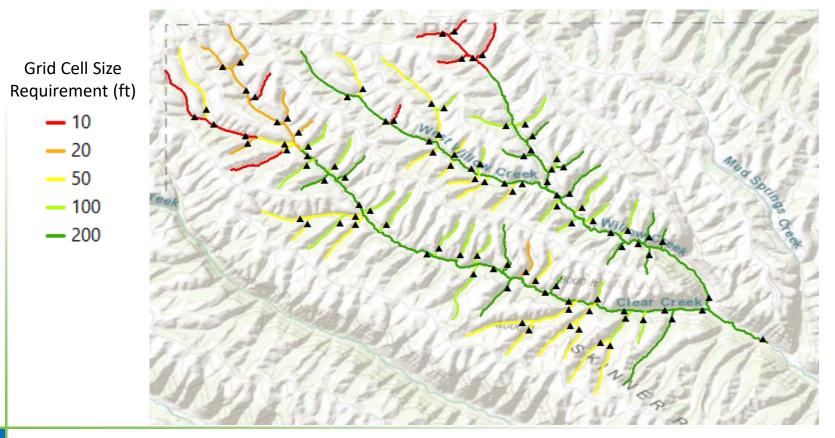
R&D Solution – 2D BLE Scoping Tool

- Create automated tool to:
 - Determine if 2D BLE appropriate for watershed
 - Identify the optimal grid cell size for all streams within a watershed:

Define stream segments

Calculate average slope and discharge

Determine optimal grid cell size using determination matrix


Example Tool Process

Average Stream

Slope %	Grid Cell Size (ft)							Slope %	Grid Cell Size (ft)	Discharge (cfs)					
		10	50	100	500	1,000	5,000		5122 (11)	10	50	100	500	1,000	5,000
	10	Yes	Yes	Yes	Yes	Yes	Yes		10	No	Yes	Yes	Yes	Yes	Yes
	20	Yes	Yes	Yes	Yes	Yes	Yes		20	No	No	No	Yes	Yes	Yes
0-2	50	No	Yes	Yes	Yes	Yes	Yes	10-12	50	No	No	No	No	No	Yes
	100	No	No	No	Yes	Yes	Yes		100	No	No	No	No	No	No
	200	No	No	No	No	Yes	Yes		200	No	No	No	No	No	No
	10	No	Yes	Yes	Yes	Yes	Yes		10	No	No	No	Yes	Yes	Yes
	20	No	No	No	Yes	Yes	Yes		20	No	No	No	No	No	Yes
6-8	50	No	No	No	No	Yes	Yes	14-16	50	No	No	No	No	No	No
	100	No	No	No	No	No	Yes		100	No	No	No	No	No	No
	200	No	No	No	No	No	No		200	No	No	No	No	No	No

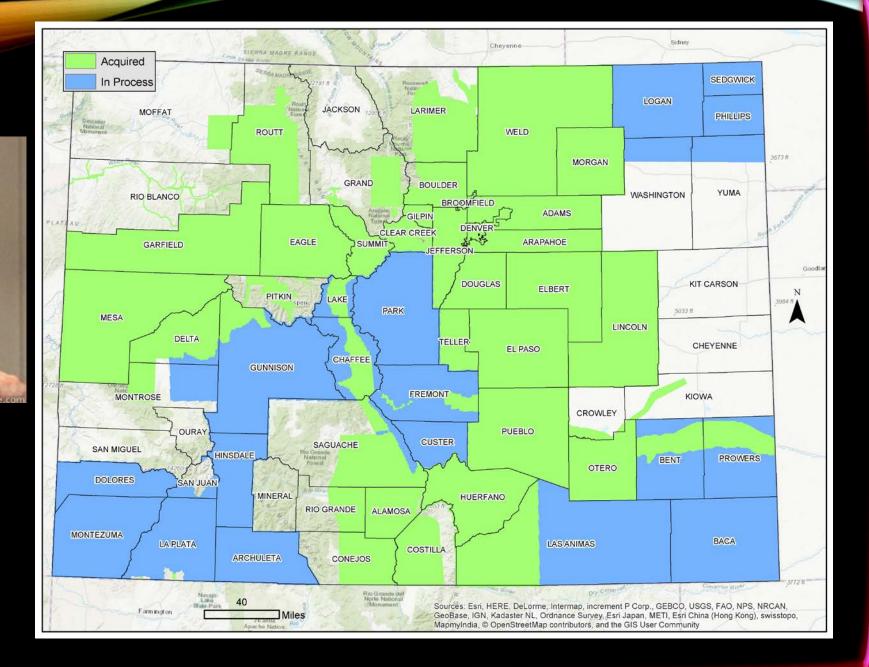
Grid Cell Requirements

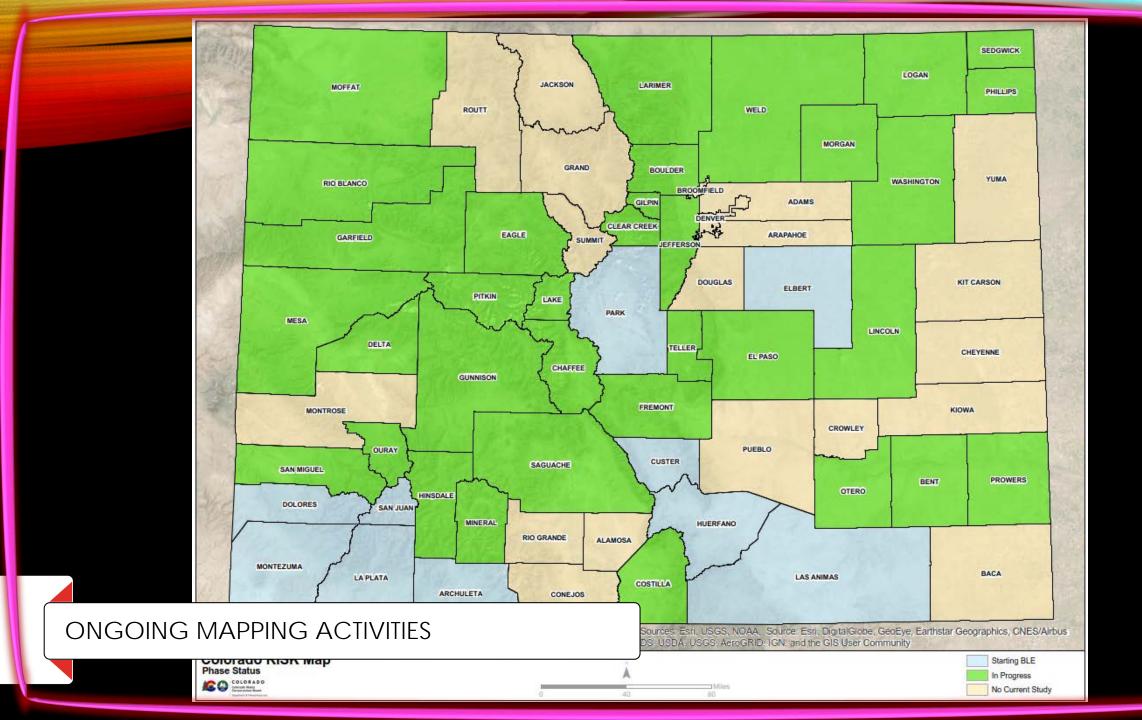
Future of 2D BLE

- Improved scoping and initial model development decisions
- Improved mapping decisions
- Better calibration decisions and model feedback
- HEC-RAS 5.1 capability will change the game

Questions?

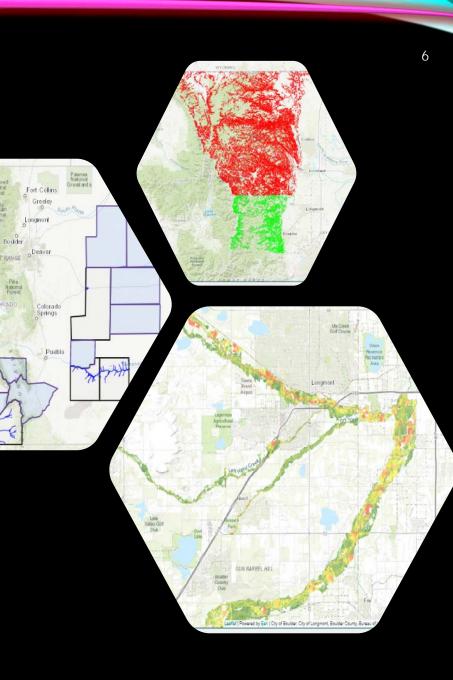
RISK MAP: PAST, PRESENT, Intervention, CWCB


Rigel Rucker, AECOM

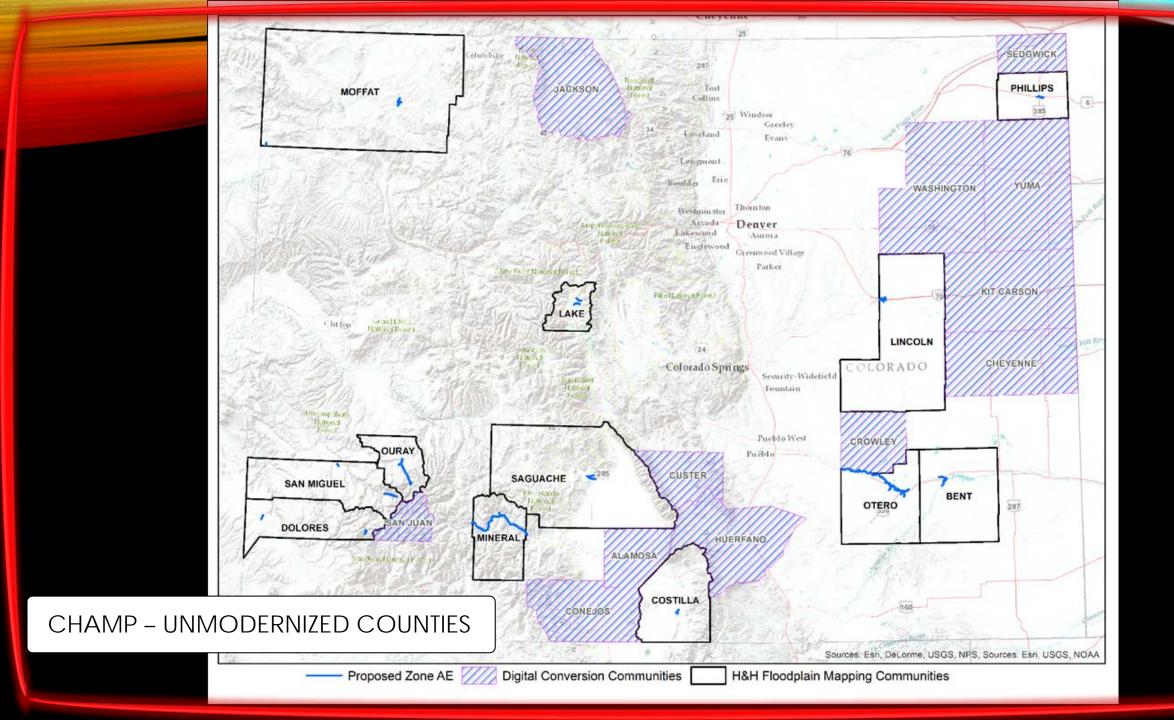


DISCLAIMER! IF YOU ARE UNDER 30, JUST IMAGINE RICK AND MORTY!

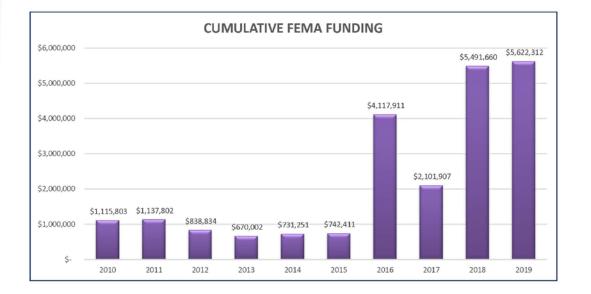
WOW! YOU MUST BE RICH!

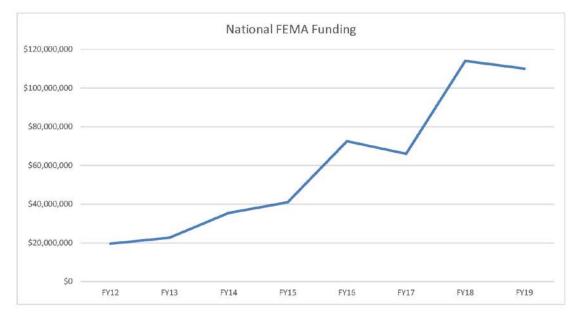


COLORADO HAZARD MAPPING PROGRAM


Resilient Colorado – Multiple Hazard Approach

- Floodplain Mapping
- Paper Inventory
- Debris Flooding
- Erosion Hazard





TRENDS AND FUNDING

2D

Colorado 2d Consortium (C2DC)

How to use new technology to our advantage

- Floodways
 - Unsteady flow
 - Multiple incoming streams
 - Large Models
- No-Rise
- Regulatory Product Use
- Web Based Determinations

11

NON-REGULATORY PRODUCTS/PILOT PROJECTS

Grids to Support Mitigation

- Depth Grids
- Hazard Grids
- Velocity Grids
- Others

Lidar LOMAs - GIS Instructions for new topo

- Teamed with Mile High Flood District
- Step by step
- Multiple successful pilots
- Additional info in Lidar LOMA presentation

Pilots to Support Local Needs

- Climate Change
- Snow Melt/Post Fire
- Tolerance and product testing
- Digital FIS

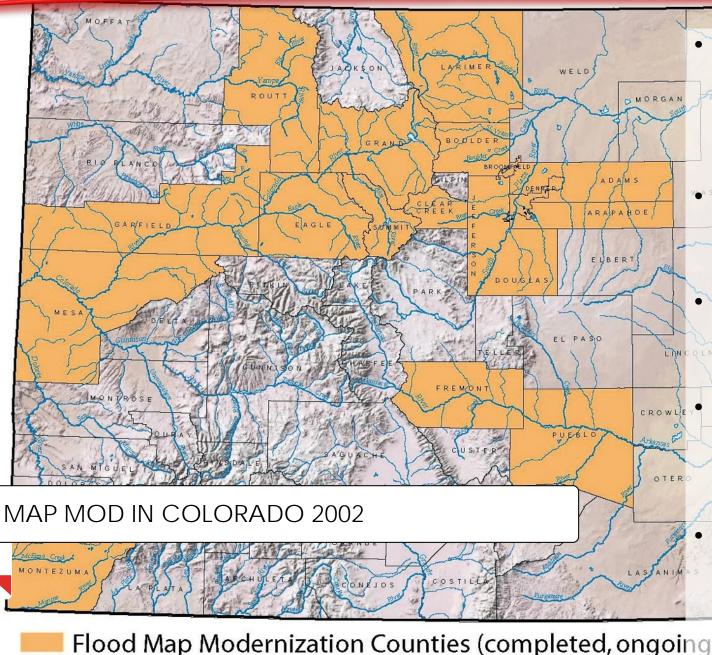
LOCAL INTEREST AND UNDERSTANDING

Keeping Locals Informed/Engaged

- Risk MAP is not most local officials first job.
- Some see results as negative for community
- Turnover given lengthy process
- Differing levels of understanding of process
- Developed support documents
- Provide in-person support

FEMA's Inventory Could Expire every 5 Years

- FEMA works with CTPs to monitor New, Valid, Updated Engineering (NVUE)
- Has to be revisited every 5 years
- Things like new topo, new hydrology, and land use changes could trigger unverified streams.


KEY DECISION POINTS: THE BASICS

- KDP Process Along with Review Process Takes Time
 - Intentional, coordinated, project management decision making
 - Consistent management data collection for all flood risk projects

Project Planning		Preliminary FIRM		Post-Preliminary FIRM		1
Project Planning & Budgeting	Discovery	Data Development, Risk Awareness & Outreach	Proposed NFIP Map Change & Impacts	Preliminary Map Release & Mitigation Path Forward	Due Process & Way Forward	
	CDP O KDI	p1 KD	P 2 KD	P 3 KDP 4	KDP 5	
Initiate Flood Risk Project?	Continue Flood Risk Project?	Develop Preliminary FIRM?	Issue Preliminary FIRM?	Initiate Appeals Period?	Issue Letter of Final Determination?	
Region Decision HQ/Region Joint Decision		HQ Decision				

- Prior to Map Modernization funding (February 2003), DFIRM projects were underway in 5 Colorado counties (Jefferson, Broomfield, Eagle, Grand, and Routt)
- <u>FY 2003</u> Map Mod funds new DFIRM work in 3 counties
 (Denver, Douglas, and Boulder)
- <u>FY 2004</u> Map Mod funds new DFIRM work in an additional 3 counties (Adams, Arapahoe, and Larimer)
- <u>FY 2005</u> Map Mod funds new DFIRM work in 5 more counties (Mesa, Pueblo, Montezuma, Garfield, Clear Creek, Fremont)
- <u>FY 2006</u> funding anticipated for at least another 5 counties, currently looking at Weld, Teller, Archuleta, LaPlata, San Miguel, Summit, Mineral, Lake, and Park as possibilities

MAP MOD BUDGET

Table 3-4. Planned Map Production Funding Distribution by Region, FY04-FY08

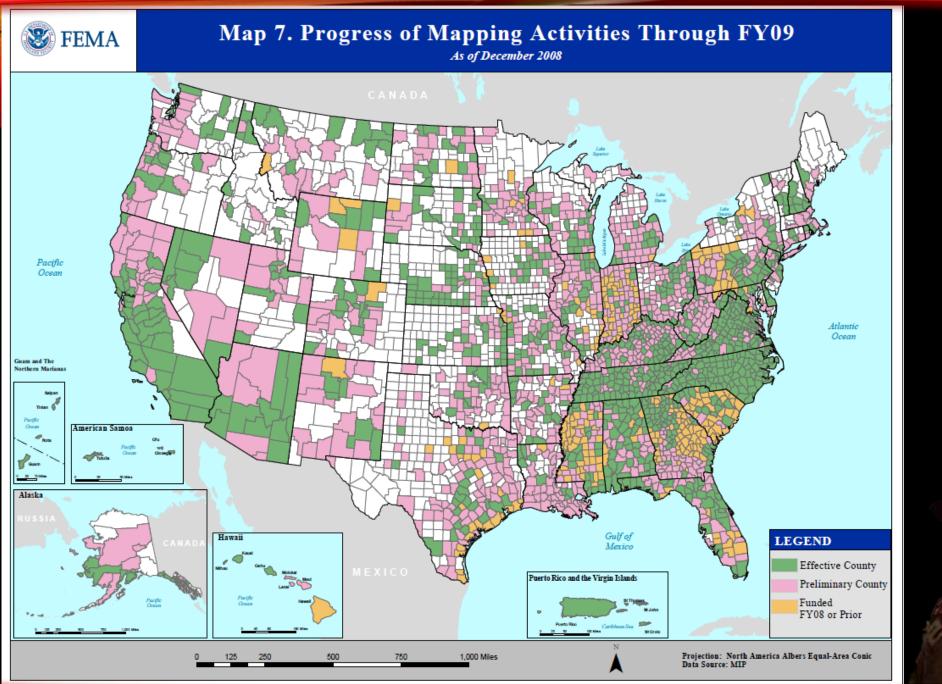
	Region	Distribution to Region	FY04 Funding	FY05 Funding	FY06 Funding	FY07 Funding	FY08 Funding
	1	3.7%	\$4,440,000	\$5,328,000	\$5,661,000	\$5,827,500	\$5,827,500
	2	7.9%	\$9,480,000	\$11,376,000	\$12,087,000	\$12,442,500	\$12,442,500
	3	8.4%	\$10,080,000	\$12,096,000	\$12,852,000	\$13,230,000	\$13,230,000
	4	24.9%	\$29,880,000	\$35,856,000	\$38,097,000	\$39,217,500	\$39,217,500
	5	11.9%	\$14,280,000	\$17,136,000	\$18,207,000	\$18,742,500	\$18,742,500
	6	17.5%	\$21,000,000	\$25,200,000	\$26,775,000	\$27,562,500	\$27,562,500
	7	7.0%	\$8,400,000	\$10,080,000	\$10,710,000	\$11,025,000	\$11,025,000
\triangleleft	8	4.7%	\$5,640,000	\$6,768,000	\$7,191,000	\$7,402,500	\$7,402,500
	9	10.1%	\$12,120,000	\$14,544,000	\$15,453,000	\$15,907,500	\$15,907,500
	10	3.9%	\$4,680,000	\$5,616,000	\$5,967,000	\$6,142,500	\$6,142,500
	Total	100%	\$120,000,000	\$144,000,000	\$153,000,000	\$157,500,000	\$157,500,000

Table ES-4. Map Production Funding Distribution by Region, FY04-FY08

Region	FY04 Funding ¹	FY05 Funding ¹	FY06 Funding ¹	FY07 Funding ²	FY08 Funding
1	\$4,222,000	\$5,911,980	\$6,240,000	\$5,670,000	\$5,670,000
2	\$9,604,000	\$11,675,013	\$11,806,000	\$13,070,000	\$13,070,000
3	\$10,235,000	\$13,250,000	\$14,172,000	\$13,390,000	\$13,390,000
4	\$38,268,620	\$39,638,112	\$36,316,119	\$39,530,000	\$39,530,000
5	\$14,446,417	\$17,155,627	\$16,880,022	\$19,060,000	\$19,060,000
6	\$20,629,000	\$27,047,947	\$25,772,340	\$25,360,000	\$25,360,000
7	\$8,575,000	\$10,294,183	\$10,343,077	\$10,870,000	\$10,870,000
8	\$6,181,000	\$8,959,254	\$7,319,783	\$8,190,000	\$8,190,000
9	\$13,228,750	\$15,400,259	\$14,140,000	\$14,800,000	\$14,800,000
10	\$4,974,400	\$6,418,200	\$5,692,000	\$7,560,000	\$7,560,000
Total	\$130,364,687	\$155,756,575	\$148,681,341	\$157,500,000	\$157,500,000

1 – Actual 2 – Proposed

Pre-Map Mod < \$25M / Year


HD

Regional Study Budgets

Map Mod

\$100-150M / Year

MAP MOD CHALLENGES

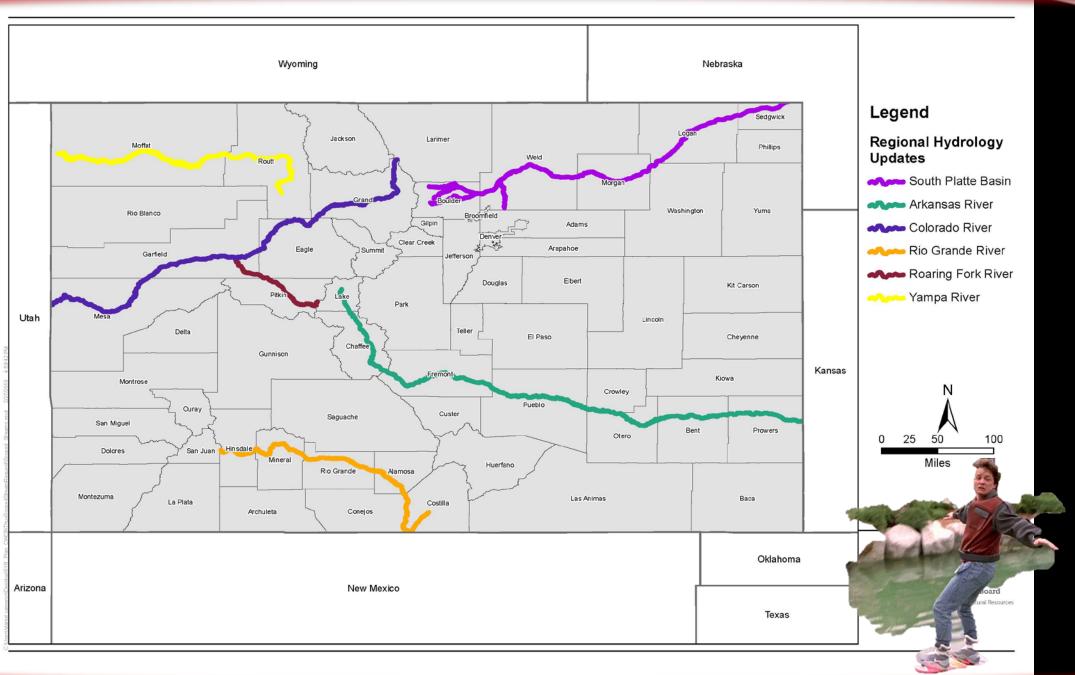
Nothing goes as planned

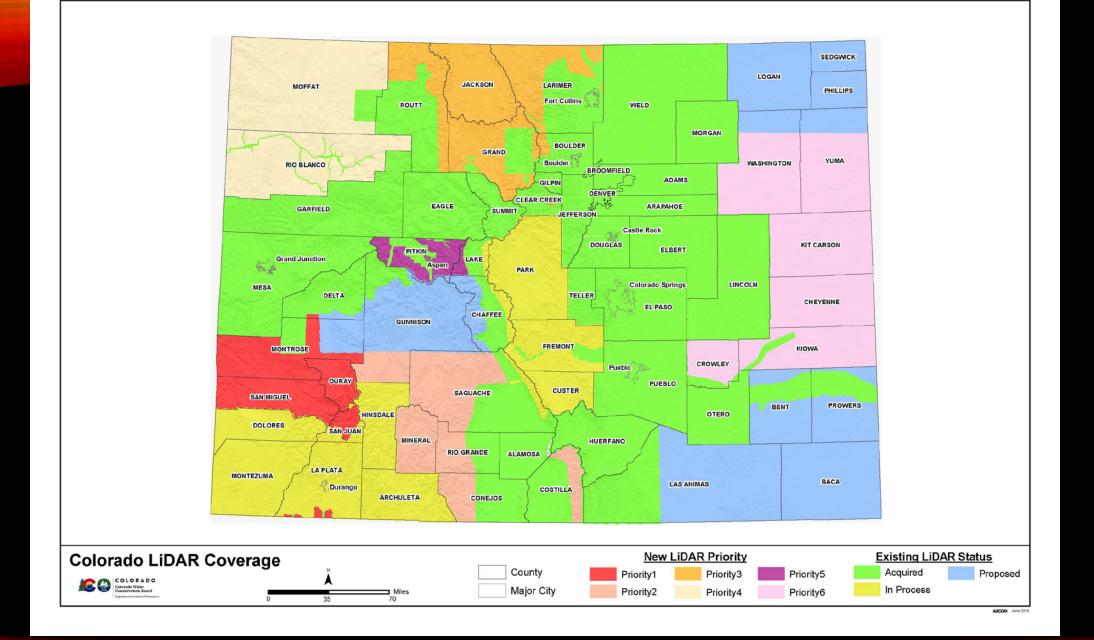
- Mid Course Adjustment Funding Issues
- Priority of Mapping changes
- Levees and non-levees
- Limited Topography

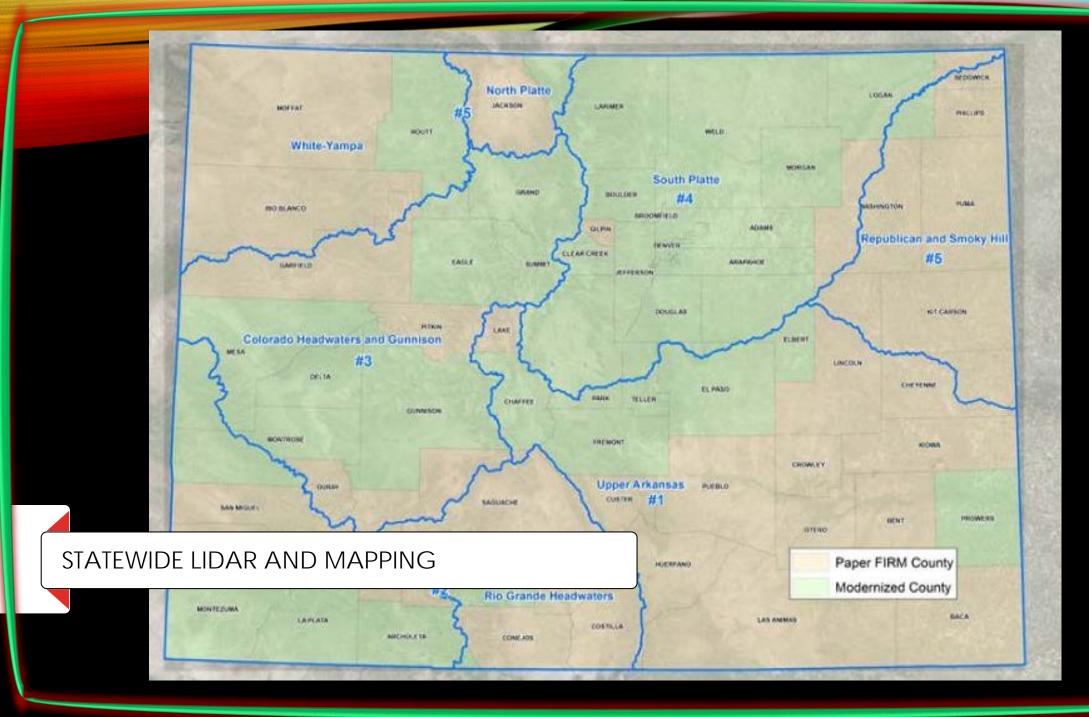
MAP MOD TRANSITION

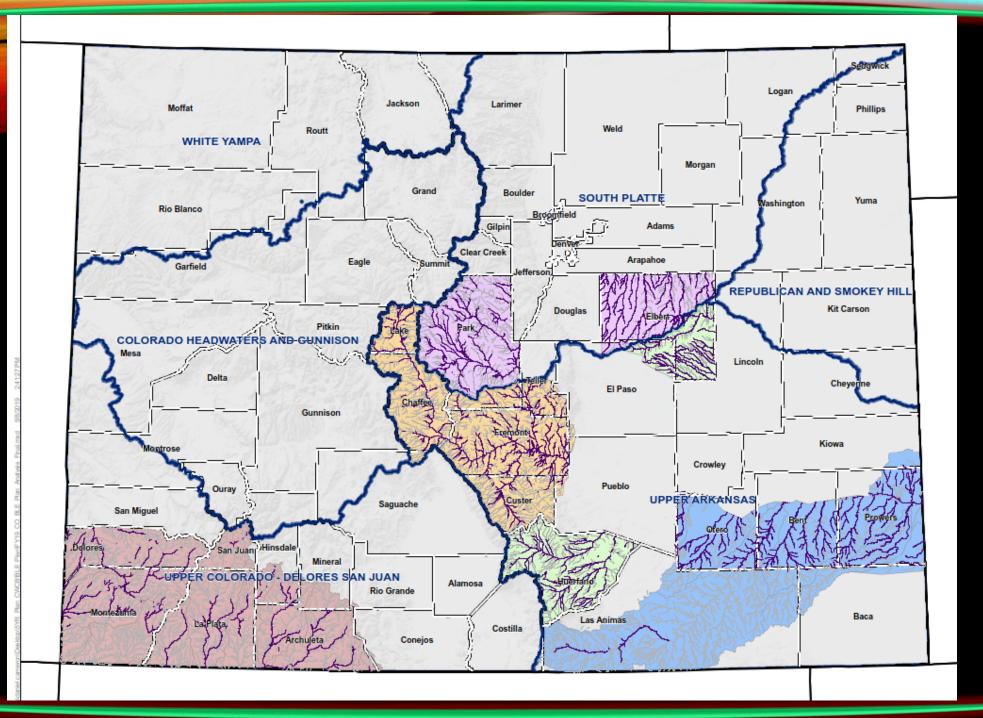
Things are starting to change

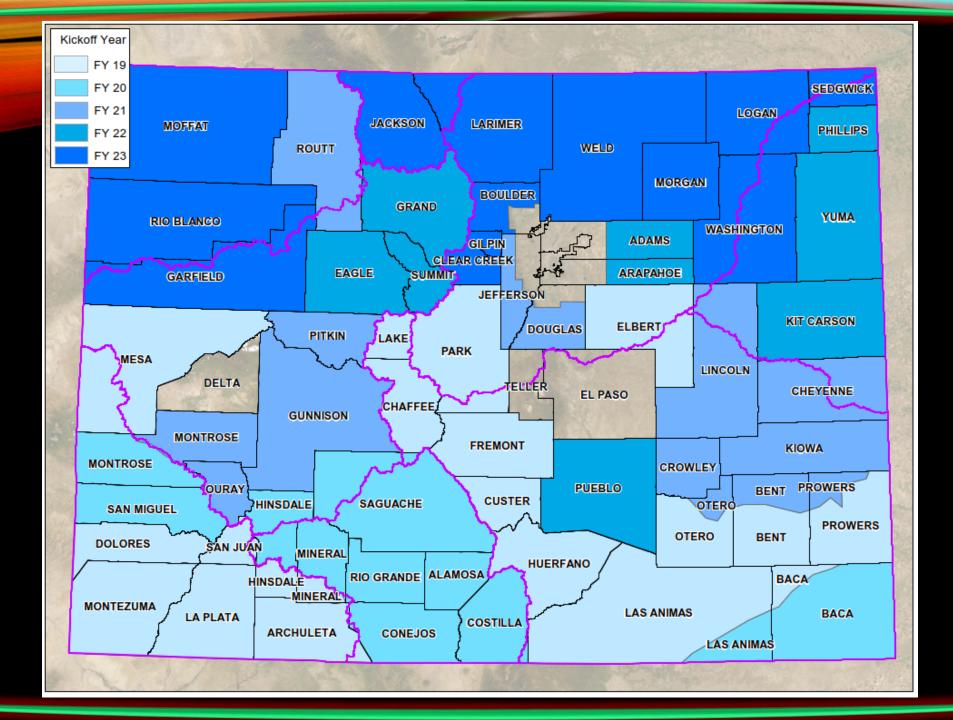
- Local Input needed
- More Budget for Detailed Studies
- Mapping Information
 Platform
- Multi-Year Flood Hazard
 Identification Plan
- Multi-Hazard Focus

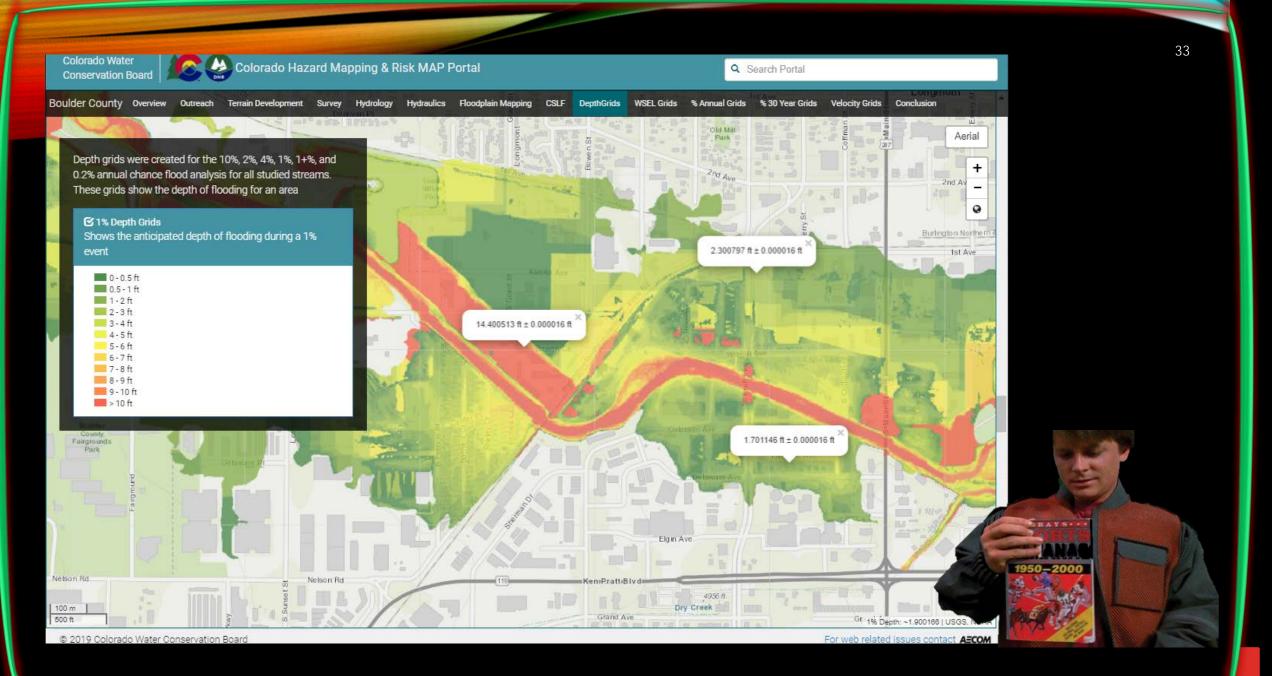


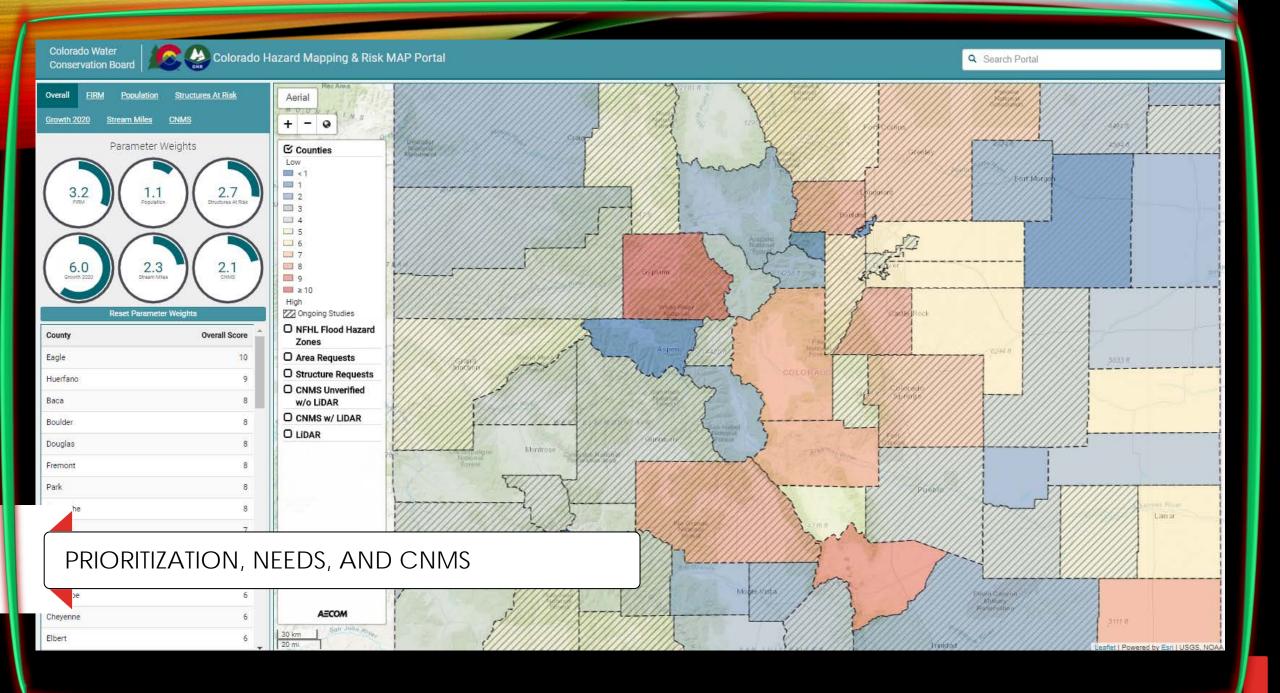

 Map Mod to Risk Map Phase Post 2013 Flood Affects Outreach and **Engagement Trends** Messaging and Local Understanding Flood recovery/CHA


TURNING POINT FOR COLORADO









TO THE FUTURE!

- LOMR Review Partnership with FEMA
- CWCB Mapping Partners Selection
- Tools for community non-regulatory use
- Model download per stream
- Lidar download portal
- Single repository for outreach information
- Quarterly Newsetter

A	K	
-5-		

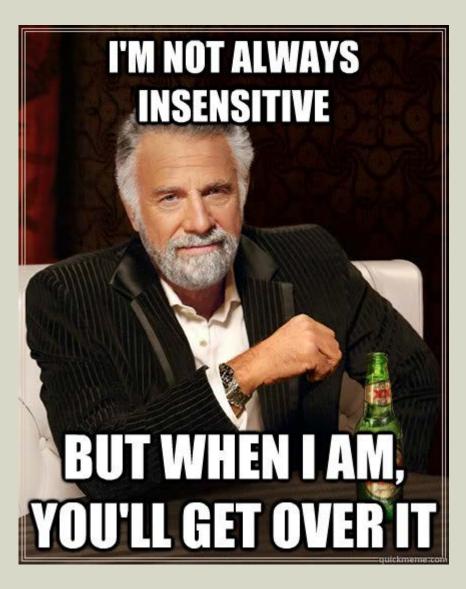
COLORADO

Colorado Water Conservation Board Department of Natural Resources

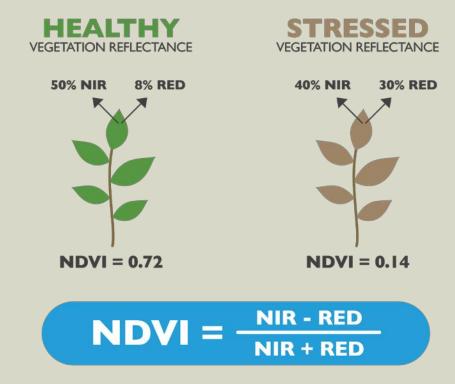
THANK YOU

- Thuy Patton
- (303) 866-3441 x3230
- ☑ Thuy.patton@state.co.us
- Rigel Rucker
- (575) 545-1107
- Rigel.rucker@aecom.com
 - www.coloradohazardmapping.com

What 4,000 HEC-RAS Runs Taught Us About Maintenance Prioritization



RESPEC.COM


Are your streams "n"-sensitive?

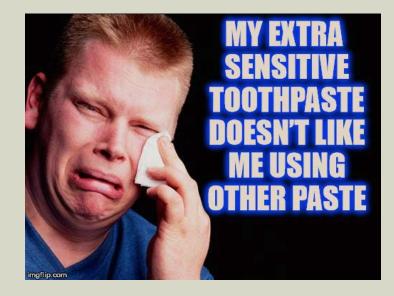
History of the Project

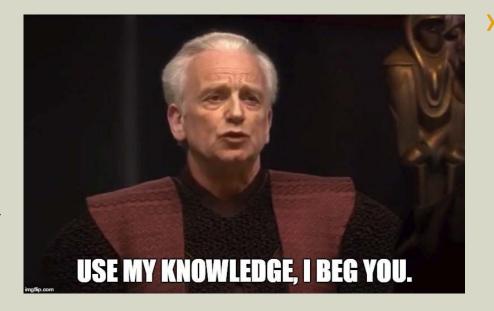
- Phase 1: Remote-sensed Manning's n analysis project
 - / Accurately estimate Manning's n values from high-resolution, remote-sensed datasets?
 - Utilize NDVI (infrared vegetation imagery) and LiDAR to remotely estimate n-values. Calibrated with effective RAS models.

History of the Project

Phase 2: Channel Sensitivity Study

- / Use statistical methods to determine channels' sensitivity to changes in nvalues?
- Aurora Water contributed additional funding, scope expanded to consider impacts of channel aggradation and culvert blockage.

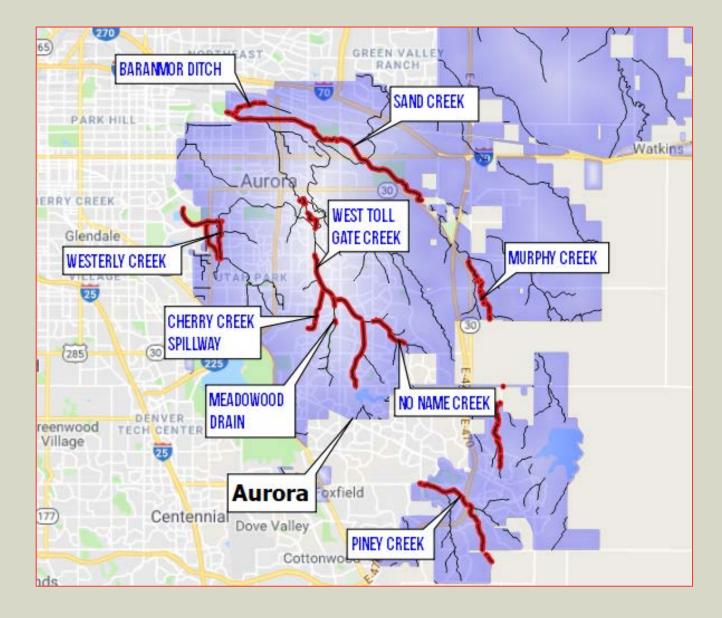


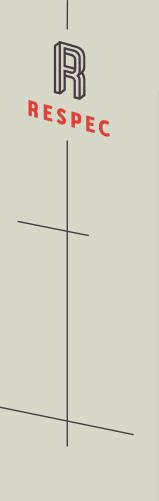

- What is the real impact of vegetation growth, aggradation, and culvert blockage on floodplain water surface elevations and extents?
 - / Models assume static parameters, which isn't the case in reality.

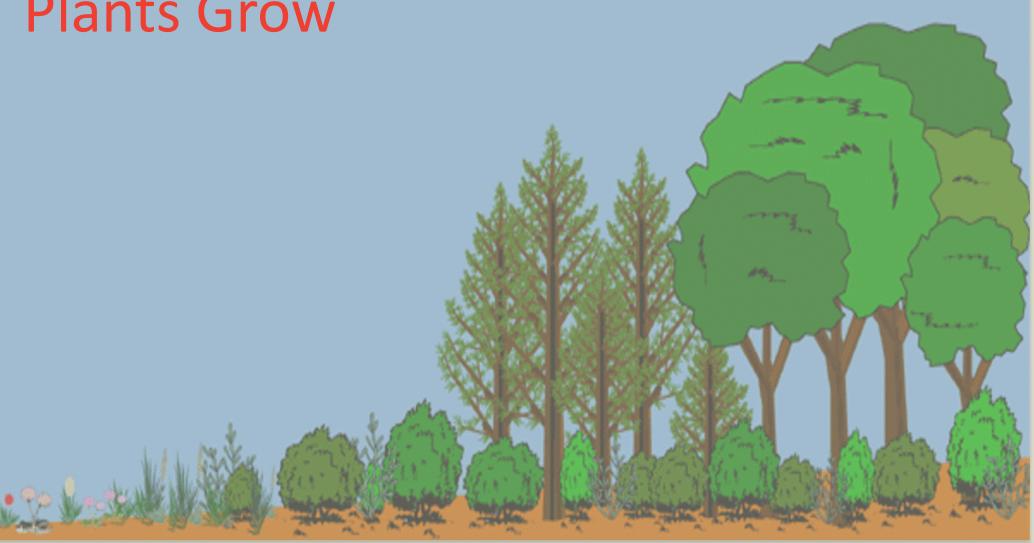
- Some reaches may be more sensitive to these changes than others.
 - / Prioritize more sensitive reaches for inspections and maintenance.
 - / Allow less sensitive reaches to remain in a more natural state.

Operations crews not always aware of the "baseline" nvalues and thalweg elevations that underlie the regulatory floodplain.

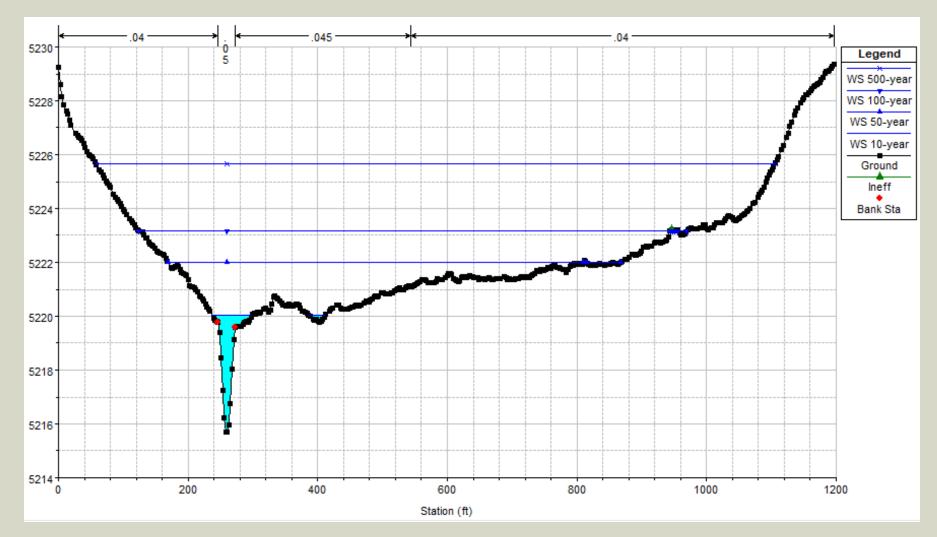
/ Provide guidance about what level to cut vegetation and excavate sediment.




- Non-regulatory statistical model allows users to examine impact of different scenarios, local impacts, varying maintenance levels, etc.
- Study provides context and prioritization for O&M activities based on real-world considerations.

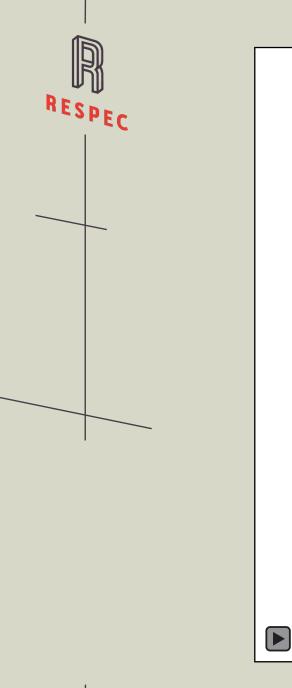


Study Area


Plants Grow



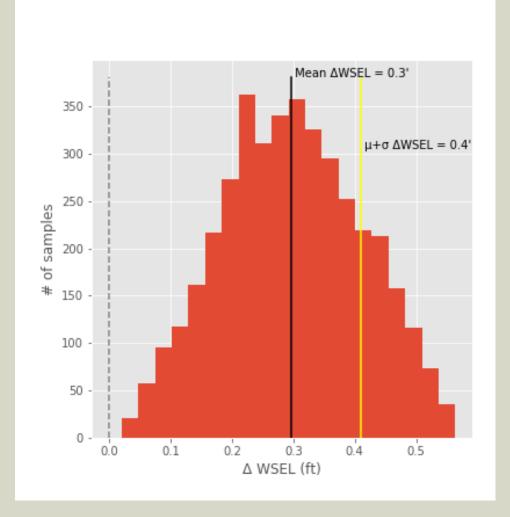
RESPEC.COM


Everyone's Favorite 1D Model - HEC-RAS!

Too Many Runs

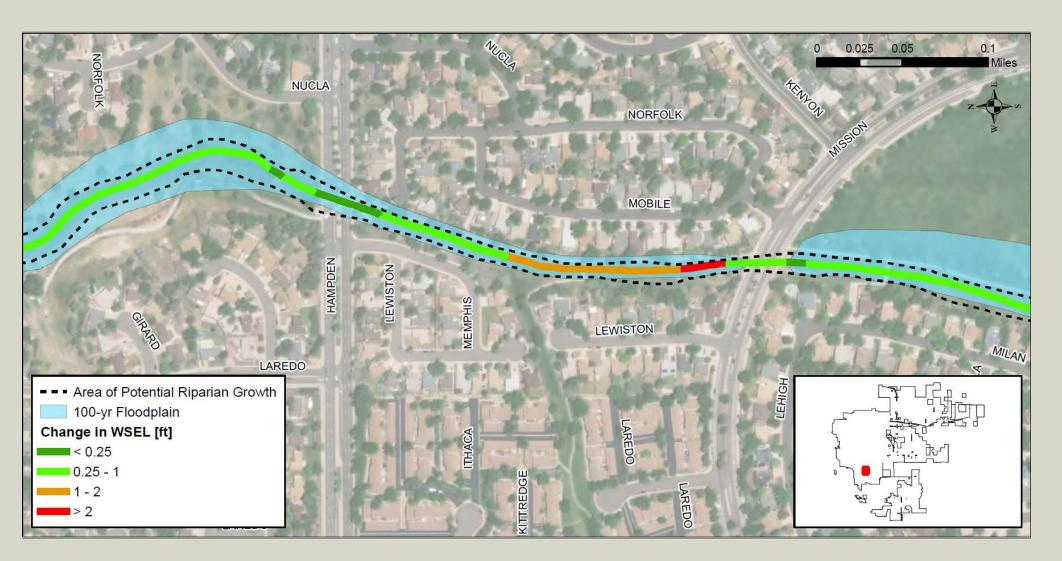
- > 100 cross sections
- > 2 n values
- > 2¹⁰⁰ = 1.3 * 10³⁰ = 1,300,000,000,000,000,000,000,000, simulations
 - 2.0 * 10²³ years

Monte Carlo Simulation


- Random 0 to 75% increase in n value
 - / Overbanks have lesser increase
- > 4,000 runs per model
- > 6 hours all 4,000 runs

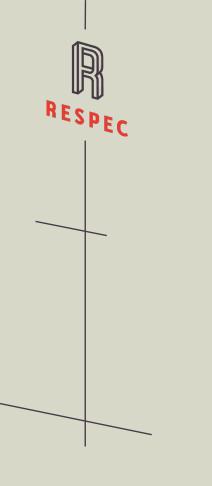
>>> print('Hello CASFM!') Hello CASFM!

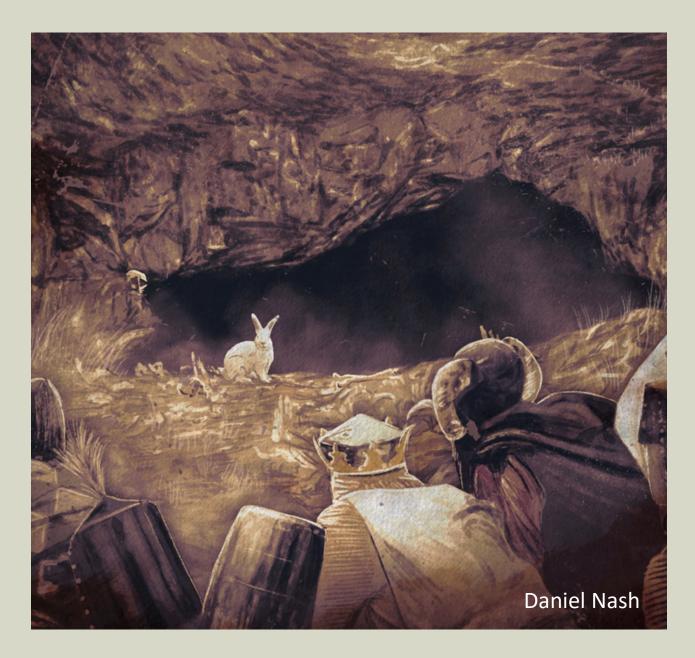
What Do The Results Look Like?


Unnamed Creek Cross Section 2576

RESPEC

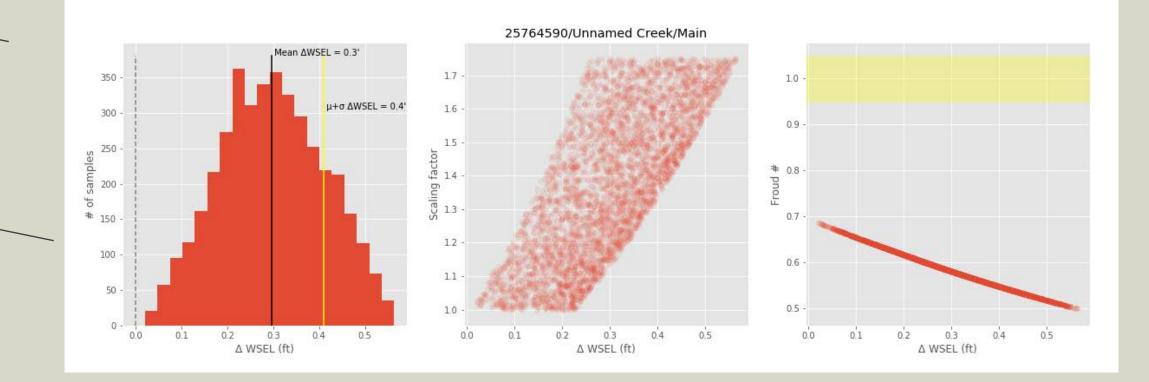
Results Map

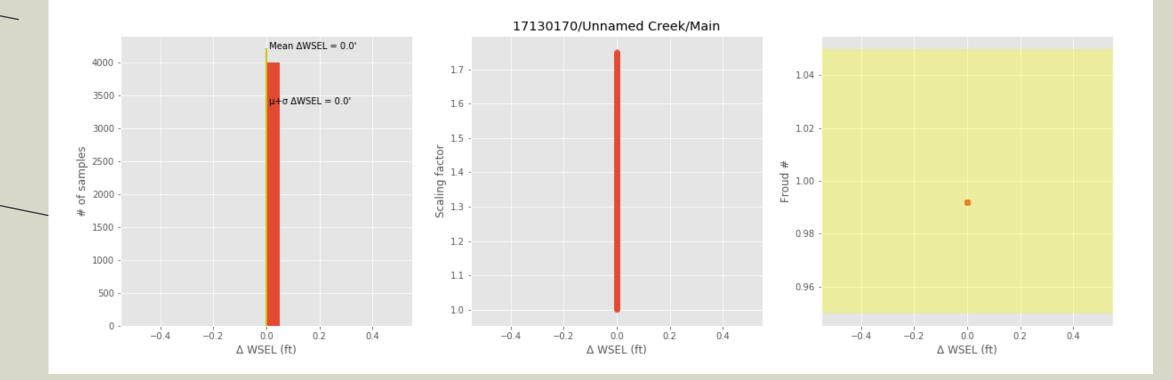



What Did We Learn?

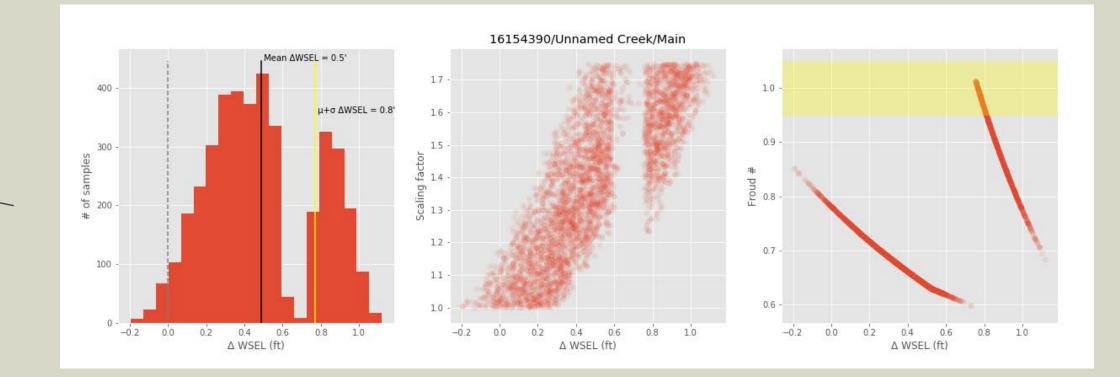
> Vegetation growth can increase WSELs

WSEL increases vary spatially
 Maintenance can be prioritized

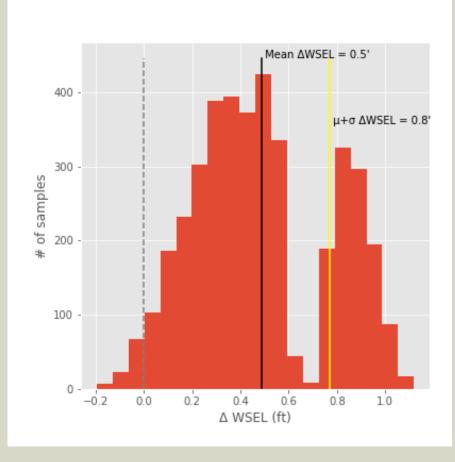

> Predicted increases are typically < 2'</p>

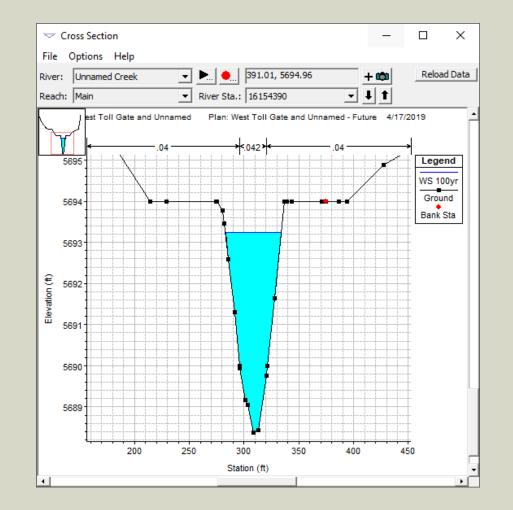


Typical, Well-Behaved Results

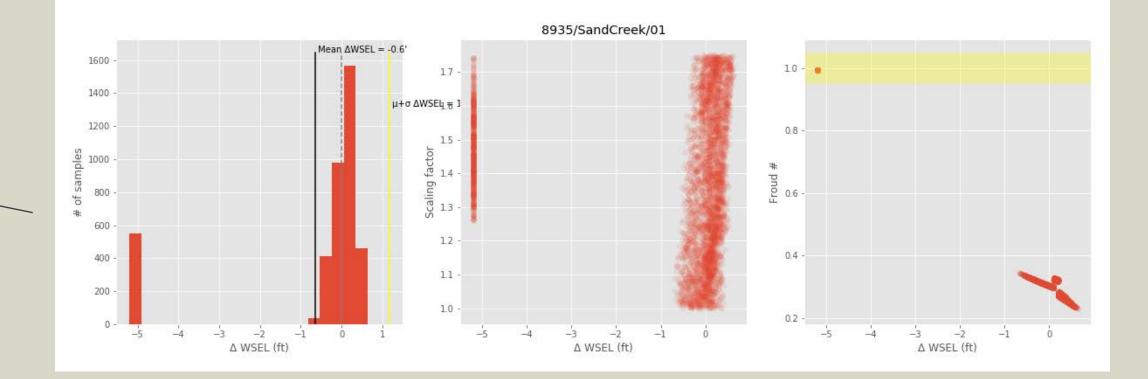


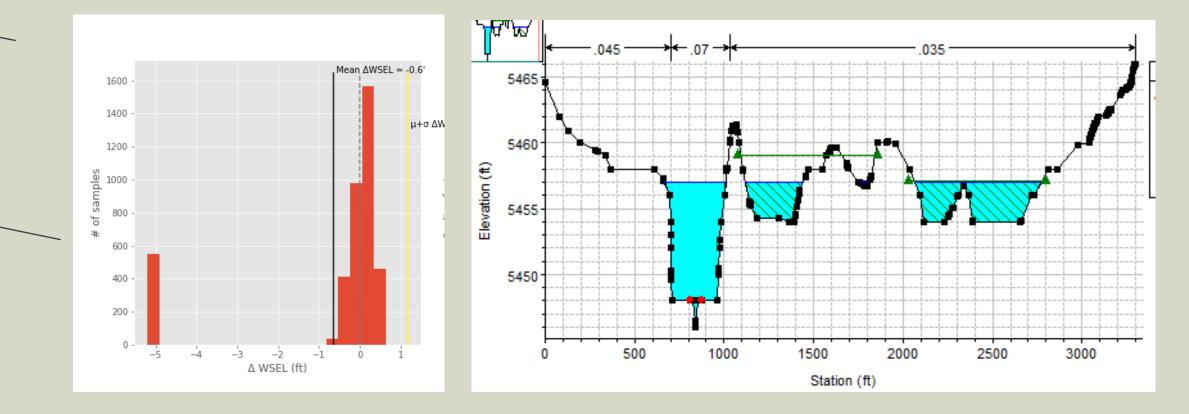
Insensitive Cross Section


Weird - Holes in the Histogram



23


Weird - Holes in the Histogram



Unstable and Scary

Unstable and Scary

What Else Did We Learn?

- Most cross sections are well behaved
- > Some are a little weird
- A few are scary HEC-RAS does strange things sometimes

> Sensitivity analyses are a good thing

27

Want to Run a Monte Carlo Simulation?

> Parse RAS Geo

/ https://github.com/mikebannis/parserasgeo.git

> RAS Control

/ https://github.com/mikebannis/rascontrol.git

Aurora Water's Maintenance Responsibility

In 2017, the City of Aurora maintained approximately:

- > 77 miles of channel
- > 91 ponds
- > 210 overflow tracts/easements
- > 3 dams
- > 1 levee.

West Tollgate Creek at Buckley Street

Maintenance Prioritization

Field guide established for each type of vegetation

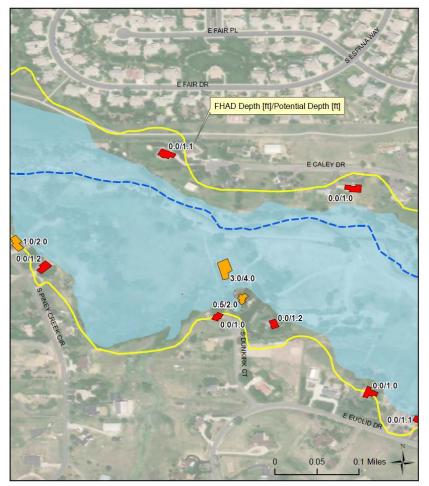
- / Native grass/weed management
 / Woody vegetation management
 / Chemical vegetation management
 / Revegetation
- > Use of empirical knowledge to drive maintenance scheduling
- Inspections of existing conditions dictate maintenance activities

Example of Maintenance Methods

Woody Vegetation C Ε B D Ε D С B

A= All woody vegetation will be removed from center of channel

B= Remove all noxious, dead or fallen trees outward 15' +/- from channel. Manage willows and trim trees as necessary within 15' to allow for high flows


C= Remove all noxious trees, discretionary management of willows, trimming of trees and removal of dead and fallen trees.

D & E= Remove all noxious trees, discretionary management of willows, trimming of trees and removal of dead and fallen trees for maintenance access.

The Future of Prioritized Maintenance

Vegetation Impact on 100-yr Floodplain: Piney Creek

- - - Piney Creek

Potential Expanded 100-yr Floodplain Due to Vegetation Growth

FHAD 100-yr Floodplain

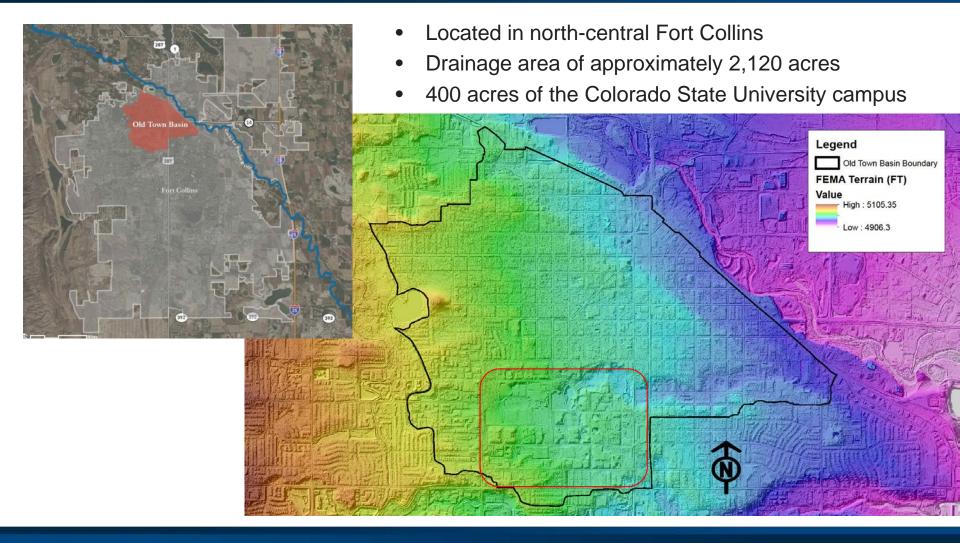
Residential Structure

- In Potential 100-yr Floodplain
- In FHAD 100-yr Floodplain

CASFM 2021?

Please?

Pretty please?


USING 2D MODELS TO PRIORITIZE CAPITAL IMPROVEMENTS A CASE STUDY OF THE BENEFIT COST ANALYSIS OF THE OLD TOWN DRAINAGE BASIN IN FORT COLLINS

Summer P =

Sandra Bratlie, PE, CFM – City of Fort Collins Jeremy Deischer, PE – ICON Engineering

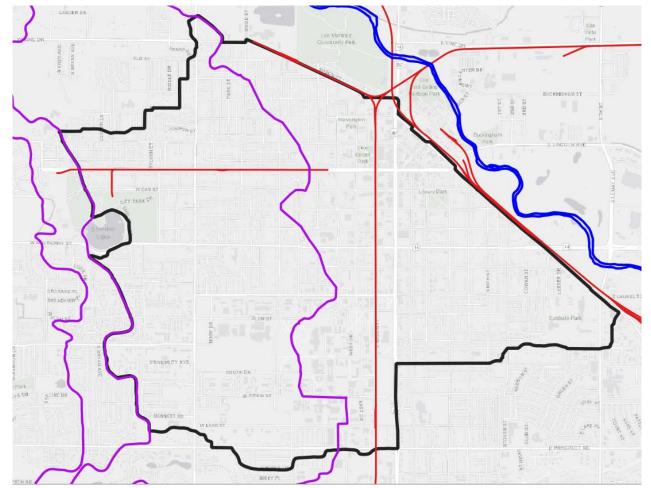
Old Town Basin

ICONENGINEERING, INC.

Fort Collins

Old Town Basin

- Fully established basin
- Development starting in the 1880's


FORT COLLINS IN 1881

https://history.fcgov.com/thenandnow

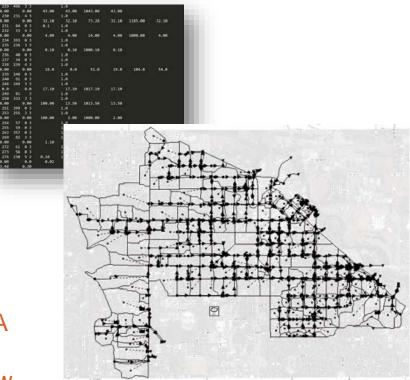
Old Town Basin Infrastructure

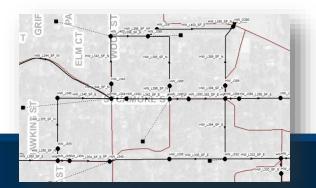
- Irrigation
- Railroad
- Active historic trolley
- Street profile and grated area inlets
- 100 year old undersized clay storm drain
- Lots of alleys and basements

Photo 3 - College Ave and Mulberry St. Intersection looking south. Photo by Linsey Chalfant.

This article appeared in the local paper following a 1992 flood in Old

Fort Collins

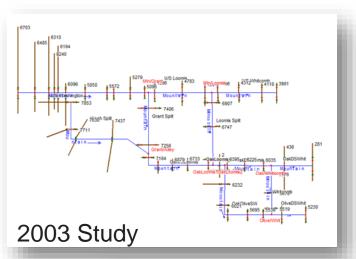

Old Town Basin Master Plan Update

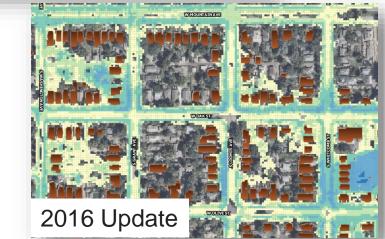

2003

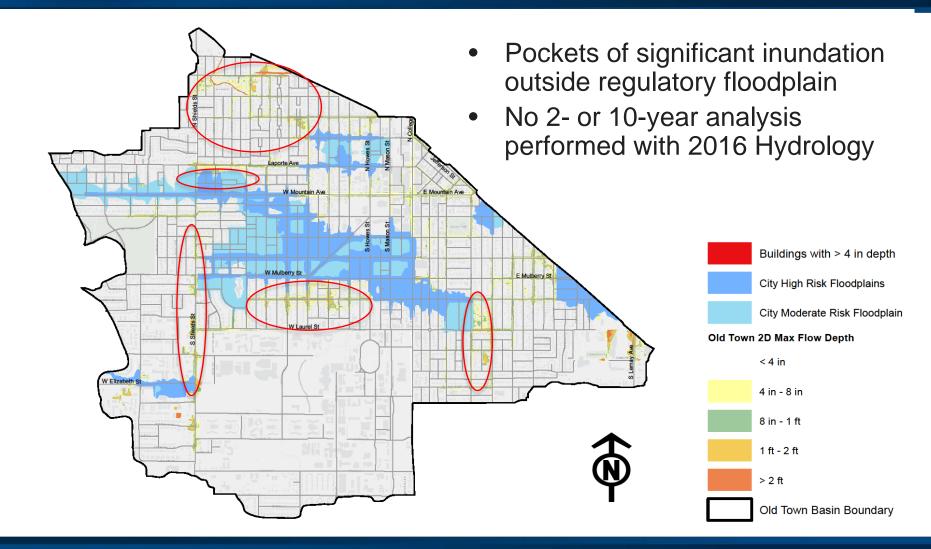
- Baseline Hydrology (MODSWMM)
- City Floodplain
- Selected Plan of Improvements

2005

- Trans-basin inflows updated
- 2016
 - Hydrology updated
 - MODSWMM model converted to EPA SWMM
 - FLO-2D used to calibrate surface flow diversions
 - Potential Inundation Area (PIA)






Potential Inundation Area (PIA)

- Effective Regulatory Floodplain developed with 2003 study
- HEC-RAS used to model locations where peak flows exceeded 200 cfs
- 2016 Update developed PIA with FLO-2D for 100-yr design event

Effective Regulatory vs. Potential Inundation Area

ICONENGINEERING, INC.

City of

Collins

Optimization of Existing Infrastructure & Outfalls

ICONENGINEERING, INC.

Fort Collins

Damage Assessment Project Goals

Evaluate existing condition damages

Develop Potential Flood Inundation for 2- & 10-year events

Develop FLO-2D simulating post project conditions

Scalable process for city-wide implementation

Datasets

- Parcels
- Larimer County Assessor Database
- 2013 LiDAR Building Outlines
- Floodplain Administration Databases

 City of Fort Collins Parcel Dataset

ins

- Dataset developed for notifications purposes
- City parcels in same extent merged together
- Not 1:1 relationship
- Replaced with Larimer
 County parcel shapefile

		57
	Identify Results	<u>a</u> ⊗ ⊛ ∰ ~
1	Feature	Value
	 Old_Town_Parcels 	
	OBJECTID	66784
	 OBJECTID 	66783
	OBJECTID	66781
	OBJECTID	66787
	OBJECTID OBJECTID	66785 66786
	OBJECTID OBJECTID	66780
	♦ OBJECTID	66782

Larimer County Assessor Database

Several datasets combined to establish relevant property information:

Address

Fort Collins

- Property Type
- Building Type
- Occupancy Code
- Building Square Footage
- Basement Type
- Basement Square Footage
- Improvement Value

Building Outline Dataset

- Dataset developed from LiDAR returns in 2013
- 8,250 structures
- Develop routines to isolate largest structure on each parcel
- Utilized demolition database to update dataset for development since 2014
- Street view and Dashboard QC

Floodplain Administration Database

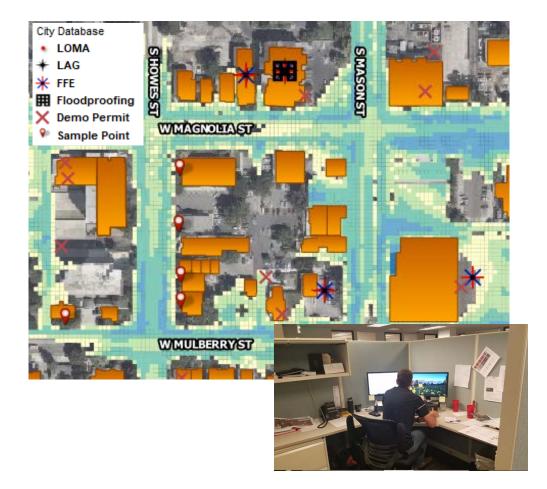
LOMA

• LAG

Floodplain Use Database

• LAG

Fort Collins

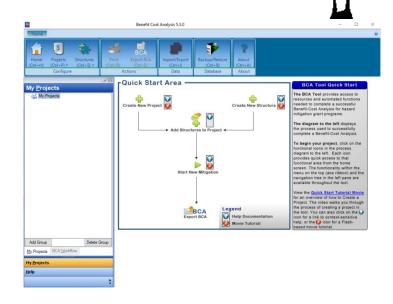

- FFE
- Floodproofing

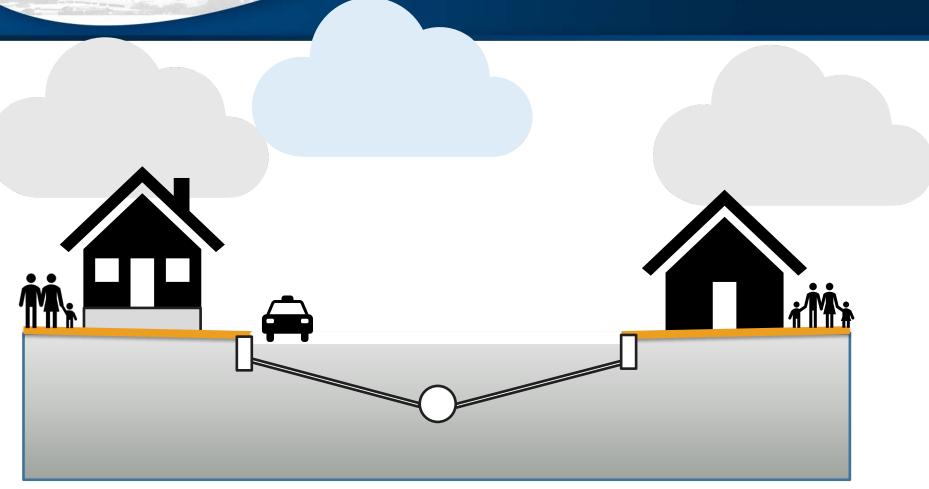
Permit Databases

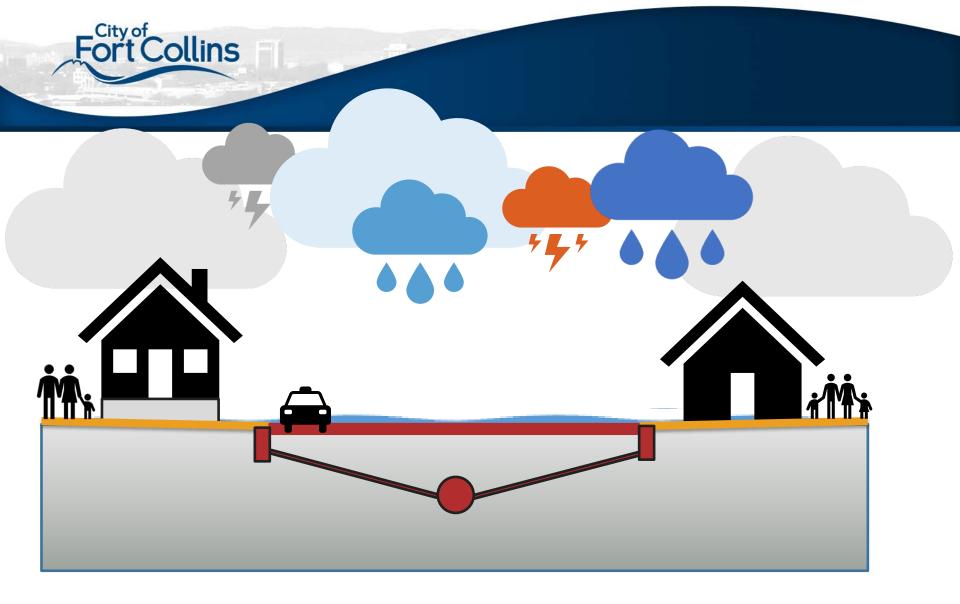
• Demo Permits

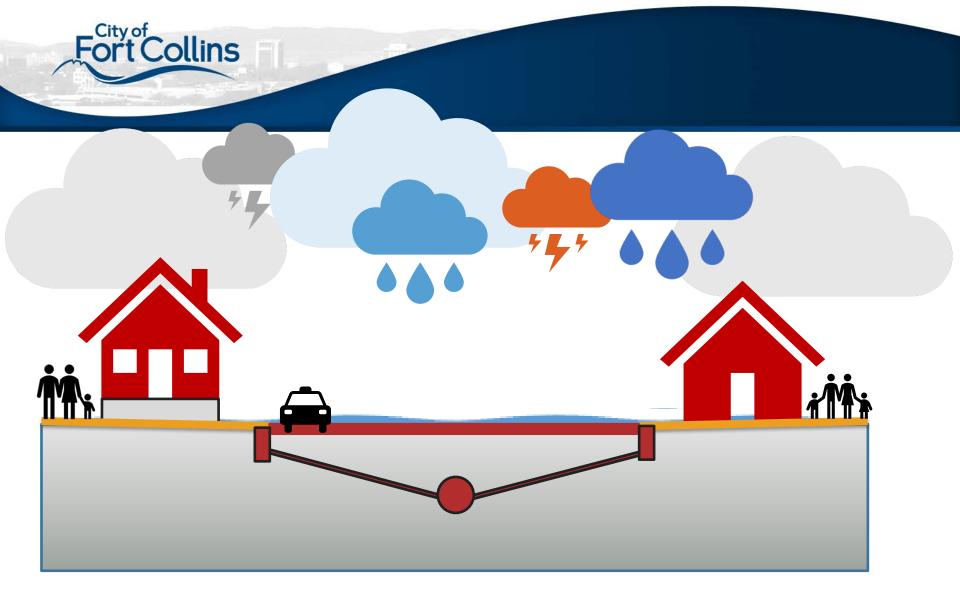
Sample Point Database

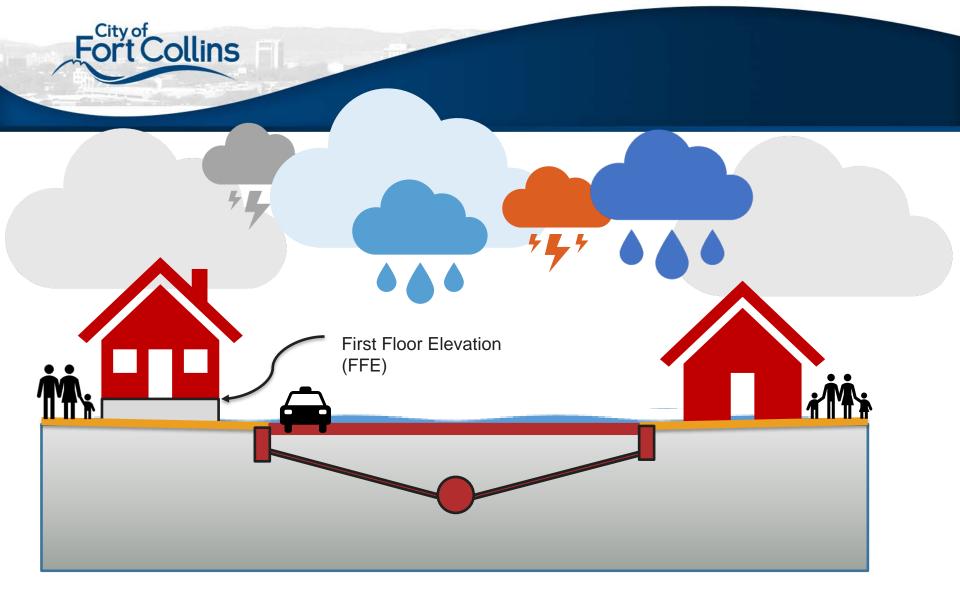
- LAG
- Number of Steps

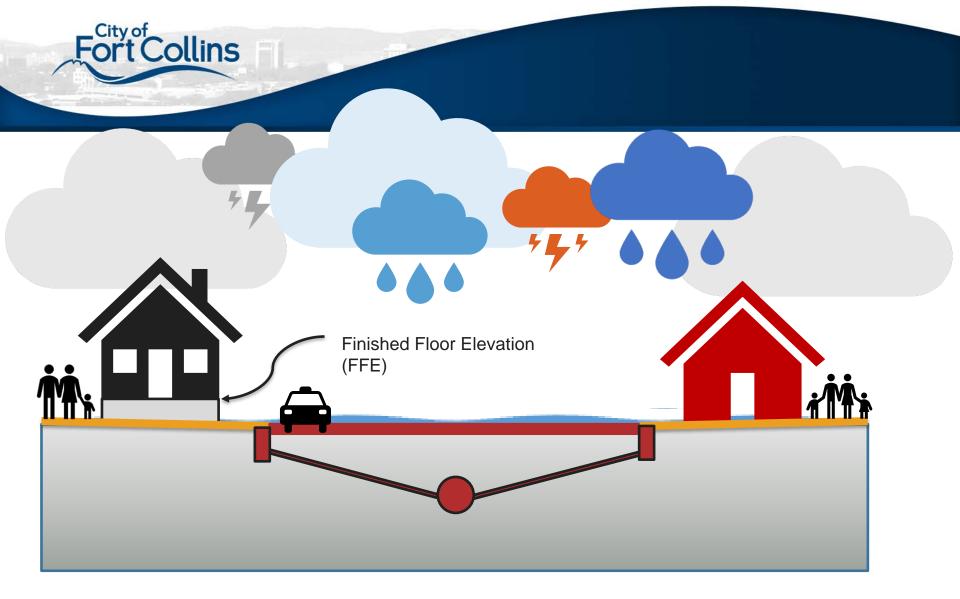


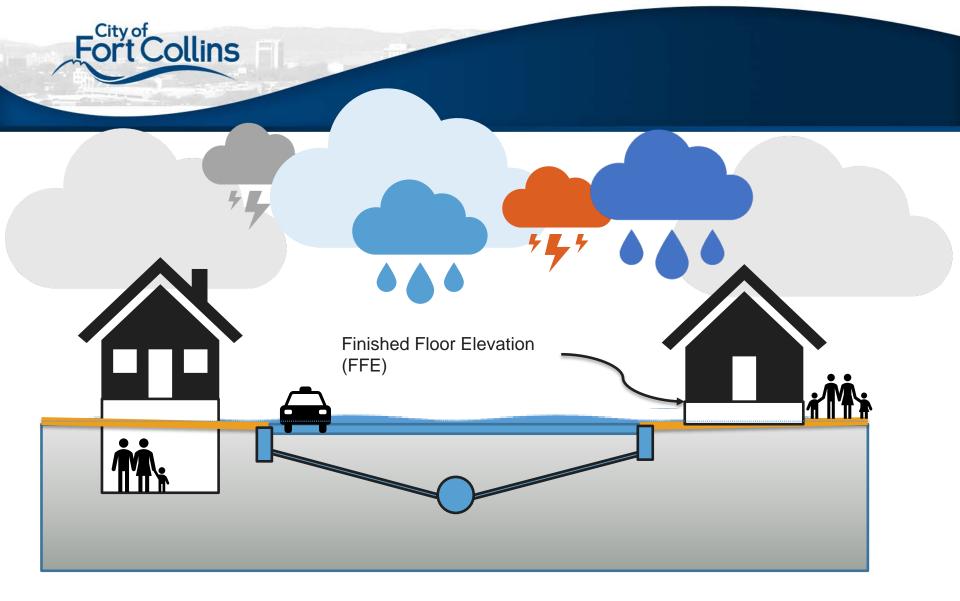

Damage Assessment Approach

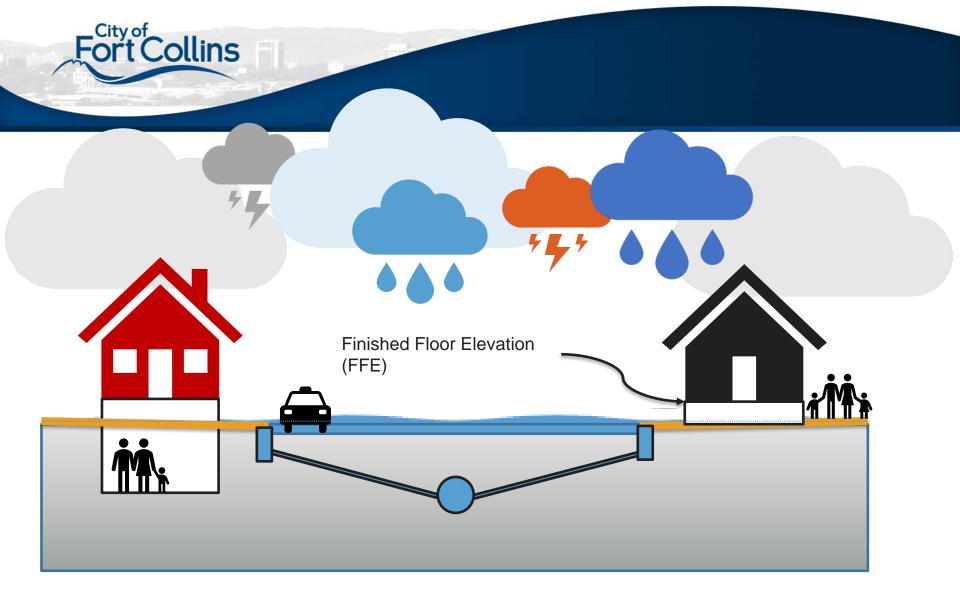

- FEMA Benefit-Cost Analysis
- Used to evaluate cost effectiveness of proposed improvement
- Future benefits are compared to project cost to develop Benefit-Cost Ratio (BCR)
- Requires:
 - Building Classification
 - Building Replacement Value
 - Flooding Depth
- Incorporates other damages
 - Loss of Function
 - Displacement
 - Social Benefits


Understanding the FEMA Benefit-Cost Analysis Process









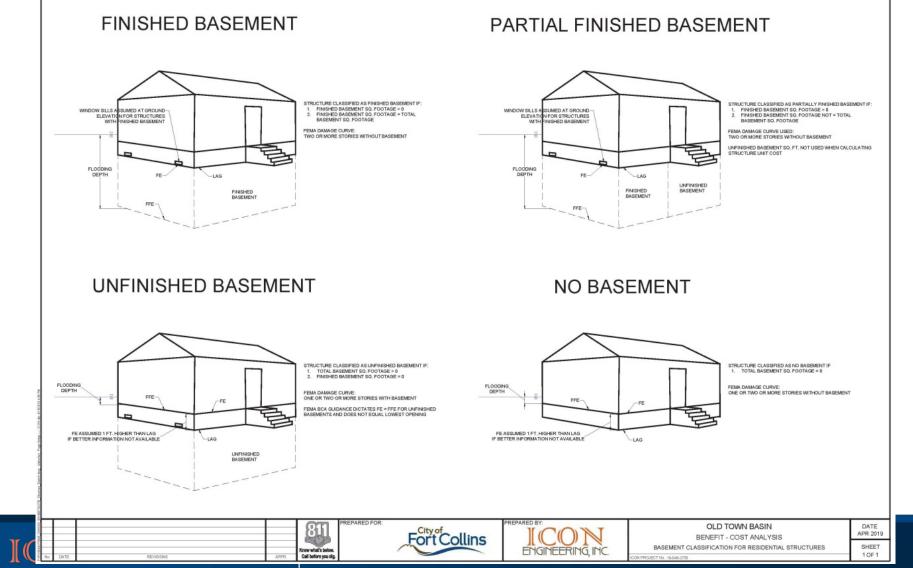


Structure Classification

BCA Toolkit Classification

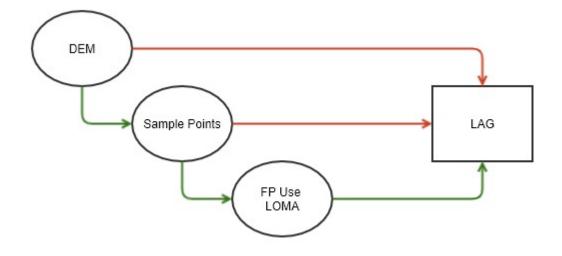
• 7 Residential

ollins

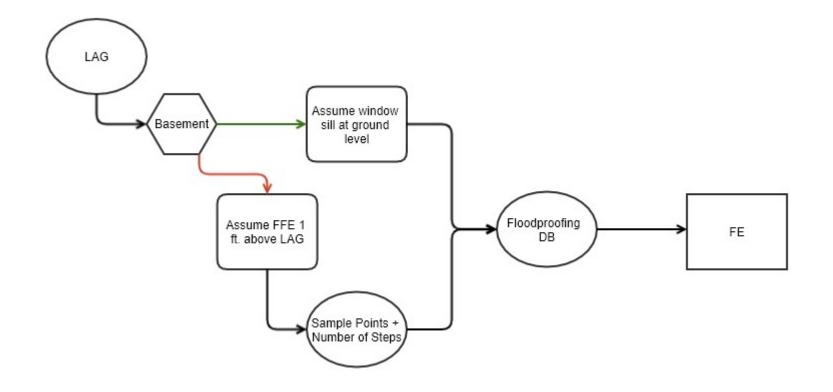

City of

• 21 Non-Residential

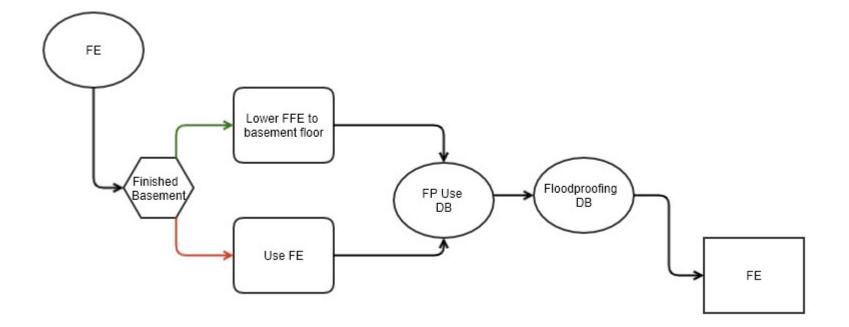
Each has unique depth / damage curve


Building		Building	
Number	FEMA BCA Classification	Number	FEMA BCA Classification
1	Mobile Home	15	Medical Offices
2	One Story, With Basement	16	Protective Services
3	Split Level, With Basement	17	Correctional Facility
4	Two or more levels, With Basement	18	Recreation
5	One Story, No Basement	19	Religious Facilities
6	Split Level, No Basement	20	Schools
7	Two or more levels, No Basement	21	Service Station
8	Retail - Furniture	22	Office, One-Story
9	Retail - Electronic	23	Convience Store
10	Retail-Clothing	24	Grocery
11	Hotel	25	Apartment
12	Fast Food	26	Industrial Light
13	Non-Fast Food	27	Warehouse, Non-Refrig
14	Hospital	28	Warehouse, Refrig

Fort Collins

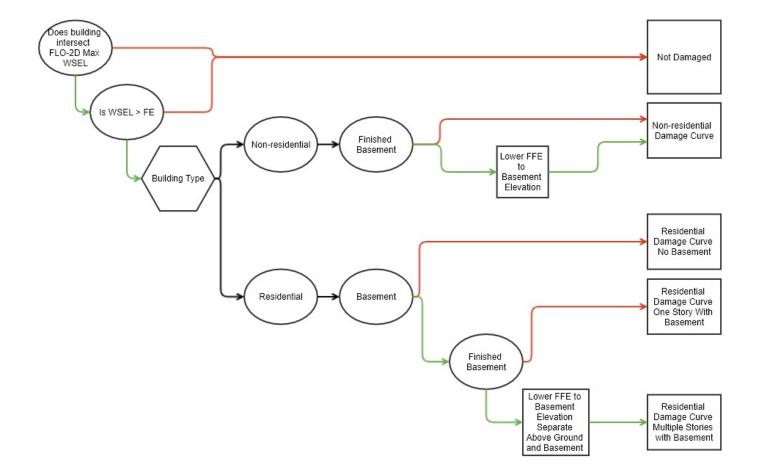


Fort Collins



Structure Key Elevations Flooding Elevation (FE)

Structure Key Elevations First Floor Elevation

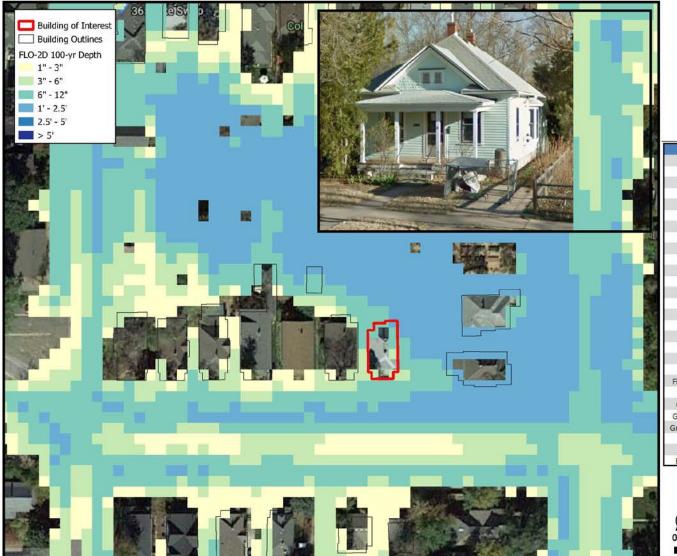

Modifications to FEMA Approach

- FEMA approach led to structures with finished basements incurring > 50% of damage
- Basements and Above Ground separated by unit cost / finished square foot
- Compared to recent insurance claims
- Removed demolition threshold

Damage Workflow

Damage Assessment Approach

FEMA BCA Approach

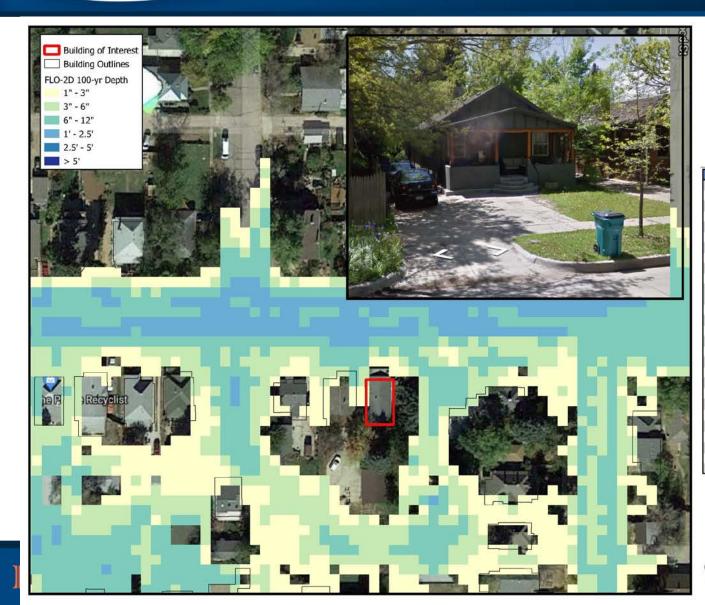

lins

- FEMA BCA Toolkit
- Building Replacement Value
- Damage applied to entire structure
- Demolition Threshold (50%)
- Incorporates other damages

Modified Approach

- Spreadsheet to mimic calculations
- Assessor's Improvement Value
- Damage applied to basement and above ground
- Demolition Threshold not considered
- Other damages not considered

Old Town BCA


Building Property	Value
Parcel No:	
Address:	
LAG DEM:	5010.89
LAG FP Use:	5010
LAG LOMA:	
LAG_Pts	
LAG:	5010
Flooding Elevation:	5011
FFE - FP Use:	5011.2
FFE - Flood Proof:	-
First Floor Elevation:	5011.2
Building Sq. Ft.:	936
Total Basement Sq. Ft.:	648
Finished Basement Sq. Ft.:	-
WSEL - 2yr:	
WSEL - 10 yr:	5011.29
WSEL - 100yr:	5012.01
Structure Value	\$332,448
Ground Level Value	\$332,448
Basement Value	0
Flooding Depth (Ground Level):	0.8 ft.
Flooding Depth (Basement):	-
Ground Level Damage (2-yr):	ŚO
Ground Level Damages (10-yr):	\$91,041
Ground Level Damages (100-yr):	\$106,606
Basment Damages (2-yr):	\$0
Basement Damages (10-yr):	\$0
Basement Damages (100-yr):	\$0

100 ft

ENGINEERING, INC.

50

Old Town BCA

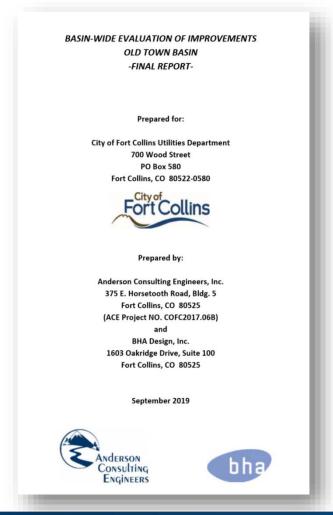
Building Property	Value
Parcel No:	
Address:	
LAG DEM:	5018.84
LAG FP Use:	
LAG LOMA:	
LAG_Pts	-
LAG:	5018.84
Flooding Elevation:	5018.84
FFE - FP Use:	-
FFE - Flood Proof:	-
First Floor Elevation:	5010.84
Building Sq. Ft.:	1008
Total Basement Sq. Ft.:	1008
Finished Basement Sq. Ft.:	1008
WSEL - 2yr:	(75)
WSEL - 10 yr:	-
WSEL - 100yr:	5019.14
Structure Value	\$330,532
Ground Level Value	\$165,266
Basement Value	\$165,266
Flooding Depth (Ground Level):	0.3 ft.
Flooding Depth (Basement):	8.3 ft.
Ground Level Damage (2-yr):	\$0
Ground Level Damages (10-yr):	\$0
Ground Level Damages (100-yr):	\$18,295
Basment Damages (2-yr):	\$0
Basement Damages (10-yr):	\$0
Basement Damages (100-yr):	\$82,435

Expected Annual Benefit

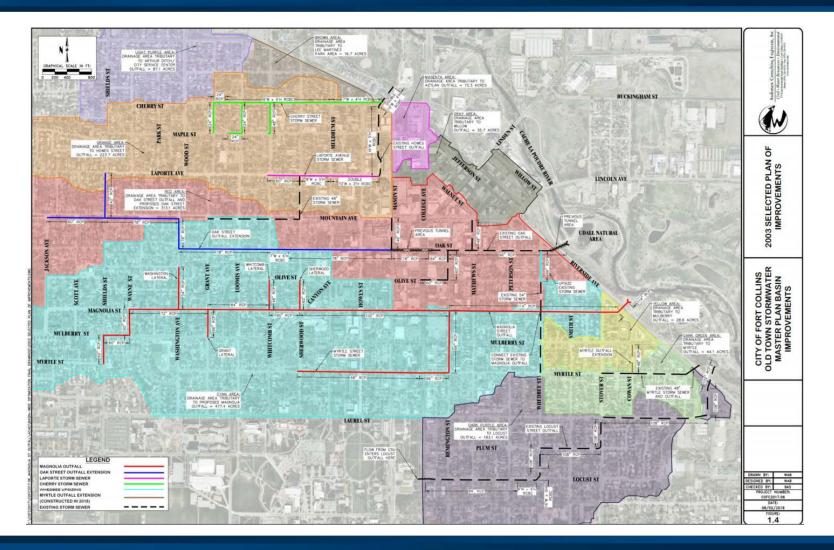
• Estimates total damages to generally be expected over a certain period of years

Project Benefits

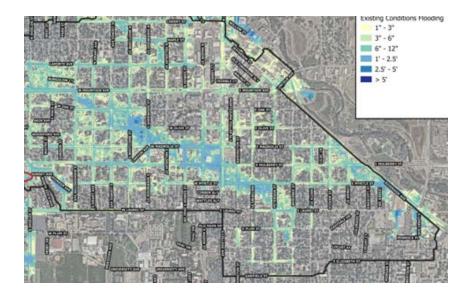
• Represents the future benefits of the mitigation project to current day costs

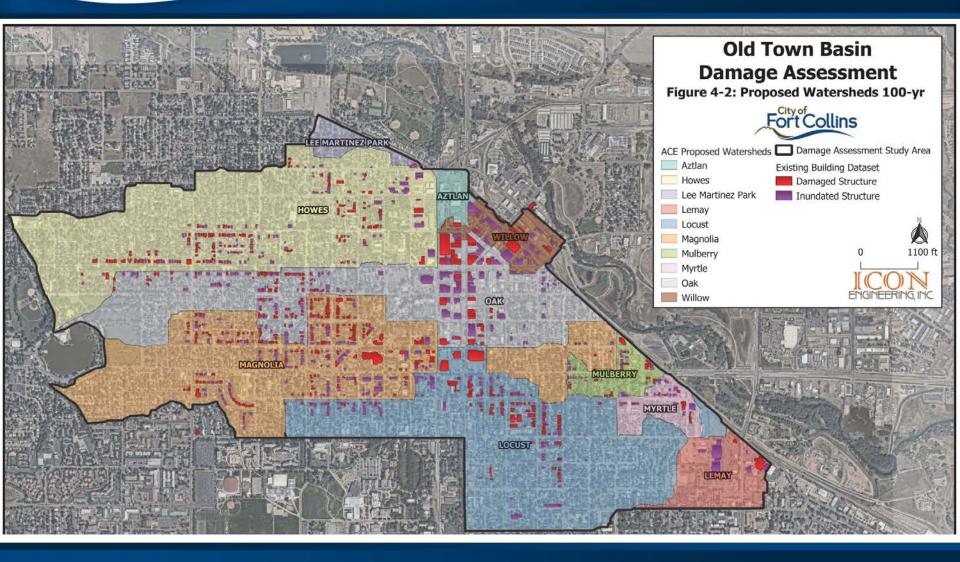

$$EAD = (50\% - 10\%) * \frac{TD_{2yr} + TD_{10yr}}{2} + (10\% - 1\%) * \frac{TD_{10yr} + TD_{50yr}}{2} + 1\% * TD_{100-yr}$$

 $Project \ Benefits: EAD * \frac{1 - (1 + Discount \ rate)^{-Project \ Useful \ Life(yrs)}}{Discount \ Rate}$

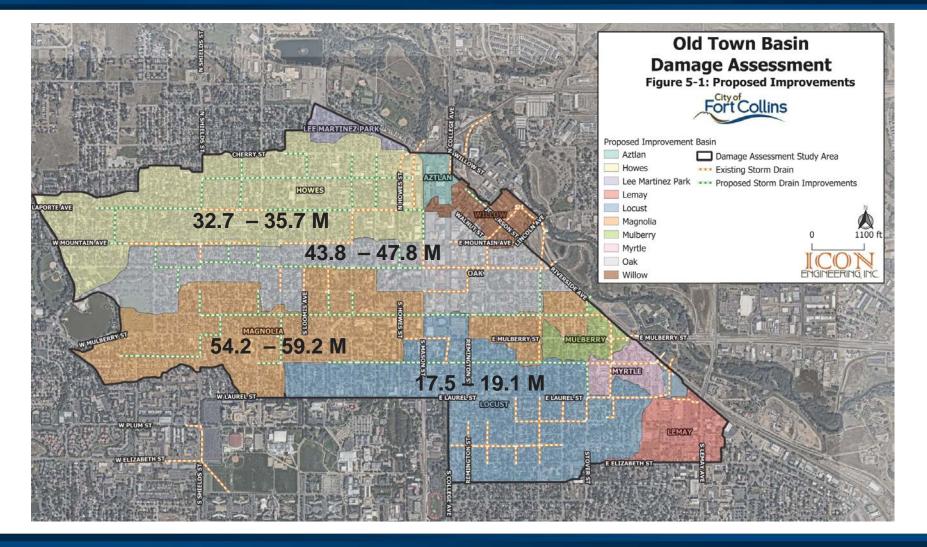

Selected Plan of Improvements

- Completed by Anderson
 Consulting Engineers
- Proposed improvements to remove 100-yr flooding
- Combination storm drain / surface flow system


Selected Plan of Improvements



Prioritizing Capital Improvements


- Each structure spatially classified
- Allowed comparison by watershed
- Complicated by transbasin flows
- Not the only criteria when deciding phasing implementation

Old Town Basin – Next Steps

Selected Plan Project Prioritization & Phasing

- Utilize / Optimize existing infrastructure and outfall
- Constructability
- Temporary Risk Impacts / Reliance on adjacent outfalls
- Public Impact / Construction Duration
- Permitting Requirements
- Flood Risk Reduction
- Collaboration Opportunities
 - FC Moves Bike Program
 - Water/Wastewater Master Plan
 - Engineering & Streets Projects
 - Parks
 - Natural Areas
 - Forestry
 - Planning

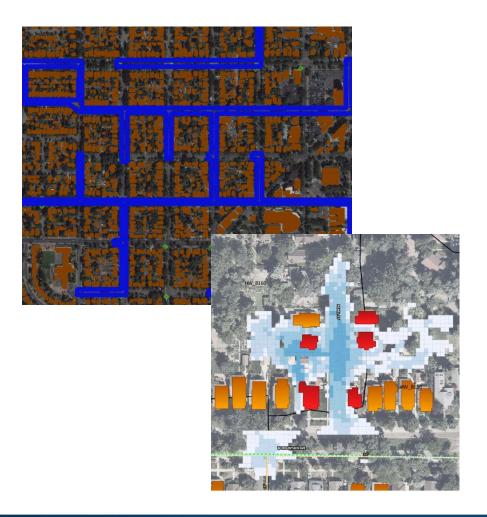
Damage Assessment - Next Steps

- Apply City-wide
 - Automate the process (GIS Model Builder?)
- Mature our GIS data
 - Ownership of datasets
 - Building Outline
 - Automate our manual tasks
 - Parcel Datasets
 - Use of GPS tools / Collector
- Incorporates other damages
 - Loss of Function
 - Displacement
 - Social Benefits

QUESTIONS?

ICONENGINEERING, INC.

Sandra Bratlie, PE, CFM – City of Fort Collins Jeremy Deischer, PE – ICON Engineering


DINY

 Modelled as FLO-2D outflow nodes

Fort Collins

 Residual FLO-2D used to help identify areas still inundated

