Fat Bikes & Sand Creek Channel Restoration

George Strait

Ron Howard

Fat Bikes & Sand Creek Channel Restoration

Walt Pennington

Adam Copper

Fat Bikes & Sand Creek Channel Restoration

Presenters: Adam Copper, PE – City of Colorado Springs Walt Pennington, PE, CFM – Merrick & Company

2019 CASFM Annual Conference

October 9, 2019

Project Team

- RESPEC Civil Engineering
- The Architerra Group –Landscape Architect
- Corvus Environmental Consulting Environmental
- Vivid Engineering Group Geotechnical
- Clark Land Surveying Topographic Surveying
- Tezak Heavy Equipment Contractor

FAT TIRE

Location

COLORADO SPRINGS

OLYMPIC CITY USA

Drainage Area

History of Problems – Drop Structure Failure (2006)

History of Problems

Emergency Bridge Closure

Existing Grade Control Structure

- Total Height: 38-ft
- Original Construction in 2006 (Height: 10-ft)
- Structure extended in 2007 and 2008

2012 Rainfall-Runoff Event

Existing Channel Dimensions

Project Funding

- Sand Creek project priority listing #9 out of 70
- City received FEMA (HMGP) grant
- City Contribution (property acquisition, earthwork import)
- Total Project Funding = \$6.3 Million

Project objectives

- Floodplain Management
- Channel Stabilization
- Bank stabilization
- Permitting
- Fat Tire Bike Access

- Maintenance and public access
- Landscape restoration
- Easements
- Ecological Improvements

Grade Control Alternatives

Sculptured Concrete

Soil Cement

Grouted Boulders

Earthwork

OLYMPIC CITY USA

Project Challenges

- Imported Fill (40,000 cy); Total Earthwork 66,000 cy
- Off-site Sources (\$700,000 City Savings)
 - Upstream detention pond maintenance
 - Developers Export
- Boulder Supply (7,000 sy)(2 different quarries)
 - Varied Boulder sizes across structure (\$50,000 Savings)
- Buried portions of the grade control structure (smaller footprint)

Access and Recreation

FAT BIKES

- Tires 4 5 inches in width
- Run at a very low inflation pressure
- Large footprint and massive grip
- Float across sand, snow, mud
 - untracked exploration

Navigable Drop Structure Plan

Public Relations

STORMWATER

ENTERPRISE

COLORADO

SPRINGS

Global Fat Bike Day

Trail Defining Boulders

Remembrance

Media/Public Relations

https://www.kktv.com/content/news/Stormwat er-project-a-new-playground-for-fat-bikers-501738371.html

February 2018

Sand Creek Construction

Sheet Pile Cutoff

ENTERPRISE

Grouting Operation

Let's mess with the construction inspector !!!

Sand Creek Construction

April 2018

Photo 15 - Looking upstream towards Platte Avenue (Ayres, Sep 2008).

Sand Creek Construction

In progress

COLORADO SPRINGS

Landscaping/Mt igation:

- 10 acres seeding
- 104 cottonwoodpd es
- 315shrubs
- 8000 will ow stakes
- 5,300 CY of Topsail import

- Leverage Greek Improvements to get Pvt Property owners to donate 1 and
- Leverage local municipal resources to maintain project budget
- Sal vaging riprapis timely and difficult is it worth it?
- Using a range of boul der sizes was beneficial
- Hydraul ic Interaction bet ween Fat Bike path and stilling basin was complicated
- Don't cut a communication line to the air force base

Conclusion

- Initiate project before it get's to \$6,000,000
- Use local resources for cost savings
- Maximize use of multiple stakeholders
- Consider trying Fat Tire Bike Riding if you get the chance

Questions

Thank You

The Application of Full Spectrum River Restoration Design in Colorado

Anthony Edwards

The Application of Full Spectrum River Restoration Design in Colorado

Travis Stroth

The Application of 'Full Spectrum' River Restoration Design in Colorado

PREPARED BY TRAVIS STROTH STILLWATER SCIENCES 4845 PEARL EAST CIRCLE, SUITE 101 BOULDER, CO 80301

PREPARED FOR CASFM CONFERENCE 2019 CRESTED BUTTE, CO

Overview/Background

COLORADO STATE UNIVERSITY (CSU)

- MASTER'S IN HYDRAULIC ENGINEERING/RIVER MECHANICS/STREAM RESTORATION
- NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM (NCHRP) RESEARCH REPORT 853
 - Dr. Brian Bledsoe
 - Dr. Peter Nelson
 - Dr. Dan Baker

- Dr. Joel Sholtes
- Tyler Rosberg
- Travis Stroth

STILLWATER SCIENCES

- RIVER RESTORATION DESIGN AND GEOMORPHIC ASSESSMENTS
- GEOMORPHIC ENGINEERING

Stillwater Sciences

NCHRP RESEARCH REPORT 853

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

Guidance for Design Hydrology for Stream Restoration and Channel Stability

> The Named Andreas of SCENCES - ENGINEERING - MEDICINE CECENCES

Level of Design Effort Based on Stream Response Potential/Risk

LEVEL OF DESIGN BASED ON STREAM RESPONSE POTENTIAL

4-DIMENSIONAL FRAMEWORK

SPACE

VERTICAL

LATERAL

LONGITUDINAL

TEMPORAL

Bed Material Entrainment Threshold (Critical Discharge, Q_c) Varies by Orders of Magnitude across Size Classes

Bank Material Also Influences Channel Response/Risk

Cobble Bed, Strong Banks $d_{50} = 124 \text{ mm}$ (~half the bed is \geq large cobbles)

Frequency of Hardpoint(s)	Strong Banks (bedrock/boulder/ coarse cobble)	Moderate (cohesive/ well vegetated)	Weak Banks (alluvium/ poorly vegetated)
None/infrequent	High	High	Very High
Intermediate		High	High
Frequent	Low		High

Bed Material = Medium to Coarse Gravel

Bed Material = Small Cobbles/Very Coarse Gravel

Frequency of Hardpoint(s)	Strong Banks (bedrock/boulder/ large cobble)	Moderate (cohesive/ well vegetated)	Weak Banks (alluvium/ poorly vegetated)
None/infrequent	Med	Med	High
Intermediate	Low	Med	Med
Frequent	Low	Low	Med

Bed Material = Large Cobbles

Frequency of Hardpoint(s)	Strong Banks (bedrock/boulder/ large cobble)	Moderate (cohesive/ well vegetated)	Weak Banks (alluvium/ poorly vegetated)
None/infrequent	Low	Med	Med
Intermediate	Low	Low	Med
Frequent	Low	Low	Low

Longitudinal Changes Also Influences Channel Response/Risk

HIGH-RISK SETTINGS CAN QUICKLY UNRAVEL

Temporal Variability in Hydrology Bed Material + Richards-Baker Flashiness Index

More Risk, More Lines of Evidence

Channel Design Using Sediment Transport & CSR Tool

LEVEL OF DESIGN BASED ON STREAM RESPONSE POTENTIAL

Balance of Water and Sediment in Streams

Channel Design Discharges

- What flow(s) should be used to estimate sediment transport?
- What flows dictate channel form?

What flows dictate channel form?

THEORETICAL BASED:

• **Dominant Discharge:** would produce the same channel geometry that is produced by the long-term hydrograph if constantly maintained in an alluvial stream over a long period of time

FIELD BASED:

• Bankfull Discharge: fills a stable alluvial channel to the elevation of the active floodplain

HYDROLOGY BASED:

• Q1.5 or Q2: recurrence interval discharges used as proxy of dominant discharge

CALCULATATION BASED:

- Effective discharge: transports the largest percentage of the sediment load over a period of many years.
- Half-yield discharge: Flow that transport half of the total sediment yield
- Total Effectiveness (All flows): Sediment supply and capacity are balanced over all flows through a channel

'Full Spectrum' Sediment Transport Capacity

Capacity/Supply Ratio Tool (CSR Tool)

CSR Tool Solutions

 $\frac{\int_{\text{time}} \text{Sediment transport capacity of Design Reach}}{\int_{\text{time}} \text{Sediment transport capacity of Supply Reach}}$

Using 'Full Spectrum' Capacity Balance

White Marsh Run, Maryland

September 1996

November 1998

Application of 'Full Spectrum' River Restoration and CSR Tool

River Bluffs Open Space River Restoration

Cache la Poudre River near Windsor, CO

³⁄₄ Mile Reach but worked focused on downstream half

\$1.3 million budget (~150k for design)

Historically channelized and bermed in 50's

Main goal of project is to increase riverine health and function

River Bluffs Design

Cutting down berms

Reconnecting relic channel as overflow path with multiple flow paths back to river

Narrowing and reconnecting main channel

Installed over 100 pieces of wood in ELJs

Supply Reach & Reference Areas

Engineered Log Jams (ELJs)

BAR APEX JAM

SMALLER LOG JAMS

INSTALLED ~140 PIECES OF LARGE WOOD

Existing Conditions

• CSR predicts very aggradational

Proposed Conditions

 CSR predicts close to balance through time

Incipient Motion using 2D Outputs

D... (1.7)

CSR Tool Challenges/Next Steps

CHALLENGES

- 1D hydraulic model with simplified trapezoidal cross section
- Sediment transport equations have a lot of uncertainty
- Finding a 'stable' sediment supply reach is difficult
- Requires a lot of hydrology data
 - eRAMS
- Sediment in, equals sediment out (CSR =1) may not always be desirable

NEXT STEPS

- Continued monitoring
 - Geomorphological
 - Ecological
- Collaborating with UNC and CSU to continue monitoring

Google: "NCHRP Report 853"

Supplemental Slides

Engineering/Geomorphology as a Spectrum

HOW DO WE PERCEIVE CHANNEL STABILITY?

TRADITIONAL ENGINEERING

NO CHANGE/RESPONSE EQUALS
STABILITY

FLUVIAL GEOMORPHOLOGY/ECOLOGY

• THE ABILITY TO CHANGE/RESPOND EQUALS STABILITY

Channel Stability

Static

Sediment Transport Balance (CSR =1)

GOLDSMITH GULCH

Using Contemporary Design to Restore a Healthy Channel

City of Greenwood Village The Architerra Group Muller Engineering ERO Resources Introduction and Key Project Players

City of Greenwood Village	The Architerra Group		Muller Engineering	ERO Resources		American Civil Constructors	
Owner	Landscape Architect		Civil Engineer	Natural Resources		Contractor	
Arapahoe County Open Space		Mile High Flood District		CDOT			
Funding and Oversight		Funding and Oversight			Funding and Oversight		

SITE HISTORY AND PROJECT BACKGROUND

SITE HISTORY AND PROJECT BACKGROUND

SITE HISTORY AND PROJECT BACKGROUND

IMPLEMENTATION:

FINAL MASTER PLAN

PHASE 1

PHASE 2

RIFFLE-POOL CHANNEL DESIGN

VOID FILLED RIPRAP

DROP STRUCTURE

DROP STRUCTURE

BRAIDED GARDENS

BRAIDED GARDENS

WETLANDS

WETLANDS

WETLANDS

STEEL GRATED WALKWAYS

STEEL GRATED WALKWAYS

SEATING AREAS

F

CHALLENGES AND LESSONS LEARNED

VOID FILLED RIPRAP

VOID FILLED RIPRAP

WETLANDS

WEIRS

WEIRS

ECOLOGICAL FUNCTION OF CHANNEL

ECOLOGICAL FUNCTION OF CHANNEL

INSPIRES EXPLORATION

MAINTENANCE

A New Model for Park Design: Integrating Nature Play with HFLM Streams

Robin Wright

Brent Kaslon

Javier Bardem

A New Model for Park Design: Integrating Nature Play with HFLM Streams

Robin Wright

Hugh Jackman

Javier Bardem

A New Model for Park Design: Integrating Nature Play with HFLM Streams

Cassie Kaslon

Frans Lambrechtsen

Jerry Naranjo

First Creek Park: A new model for Park Design

2019 CASFM Conference Presentation

Cassie Kaslon **Managing Principal** Valerian

Frans Lambrechtsen Water Resource Engineer **Jacobs Engineering Group**

Jerry Naranjo President **Naranjo Civil Constructors**

NATURE PLAY IN THE BUILT ENVIRONMENT DESIGN STANDARDS AND GUIDELINES

MHFD

What's in the Guidelines

- Nature Play Benefits
- Site Selection
- Public Engagement
- Inclusion in Nature Play
- Design Development
- Construction Document Guidelines
- Project Construction Period
- Post Occupancy
- Case Studies
- Over 70 pages of riveting information!

First Creek Park

Ownership:

Construction Team:

Design Team:

Nature's INSTRUMENTS

.

First Creek Park

Project Size: 6 acres Year Completed: Summer 2019 Location: Denver, Green Valley Ranch Budget: \$1.3 Million

First Creek Park

Project Size: 6 acres Year Completed: Summer 2019 Location: Denver, Green Valley Ranch Budget: \$1.6 Million

 $\frac{3}{4}$ of the site is inside the floodplain

First Creek Park: Existing Conditions

First Creek Park: Community Engagement

- Preserve existing trees
- Provide access to the creek

- Activities for wide range of ages
- Flowers!

 Hidden Elements of Play

Hidden Elements of Play

Hidden Elements of Play

 Floodplain Interface

HFLMS Principles and Components

- Multi-stage channel
- Connected floodplain bench
- Active (bankfull) channel
- Sinuosity, pool to pool spacing
- Riffle grade control
- Riparian vegetation

Figure from presentation by ERC through the Stream Management Academy

HFLMS = High Functioning Low Maintenance Stream

HFLMS Principles and Components

- Multi-stage channel
- Connected floodplain bench
- Active (bankfull) channel
- Sinuosity, pool to pool spacing
- Riffle grade control
- Riparian vegetation

Figure from presentation by ERC through the Stream Management Academy

HFLMS = High Functioning Low Maintenance Stream

HFLMS Principles and Components

- Multi-stage channel
- Connected floodplain bench
- Active (bankfull) channel
- Sinuosity, pool to pool spacing
- Riffle grade control
- Riparian vegetation

Figure from presentation by ERC through the Stream Management Academy

HFLMS = High Functioning Low Maintenance Stream

........

...........

Human Connection with Floodplain Preservation

Human Connection with Floodplain Preservation

Floodplain Preservation with Elemeints Contration Fields and Fun Let's Create Some Nature Play

Human Connection with Floodplain Preservation

Questions?

Thank You!

.....

Designing Hydroseres for Riparian and Wetland Restoration

John Giordanengo, M.S., CERP 970-420-7346

john@aloterraservices.com

Riparian areas:

< 1% of the land area of western states (Cooperrider, Boyd, and Stuart, 1986). 80% of wildlife species in the west are dependent upon riparian areas for survival (Wayland, 1997).

Benefits of Diverse Riparian Restoration

Increased floodplain roughness & bank stability

Increased biodiversity (& structural diversity)

Increased organic inputs to stream & stream shading

Improved water quality (sediment, temperature, DO)

Good Design Begins with Accurate (and adequate) Assessments

- 1. Condition of Plant Community
- 2. Potential Natural Community
- 3. Topography & Infrastructure
- 4. Soils
- 5. Hydrology
- 6. Regulatory Compliance

Restoring the ecological integrity of a floodplain is essential to maintaining resilience and proper floodplain function (over time)

<u>Remember:</u> SQT places the Riparian Vegetation parameter in the Geomorphology Category

Absent Goals...

Nothing Else Matters

- Increase Functional Lift for SQT (< LF needed for mitigation)
- Stabilize Eroding Banks?
- Improved Wildlife Habitat?
- Pure Ecological Restoration?
- Other?

Restoration Goals are Like Soup Ingredients

- They don't work well in isolation
- When you add more than one, a beneficial synergy is produced.
- They must be compatible (Salt, Fat, Acid, Heat)

Which of these Goals is <u>not</u> Like the Rest

- Natural Landscape?
- Stabilize Eroding Banks?
- Improved Wildlife Habitat?

- Mowed green lawn to edge of river?
- Improved Bee Forage?

Where to Start with Reveg. Design?

Res La

Elevation and Geographic Location of Restoration Site

Native Plants for Restoration in Crested Butte (Slate River or Coal Creek)

240 species available for restoration

CONTAINERS

<u>CUTTINGS</u>

Grouping Species by Life History Traits

TYPICAL LIFE HISTORY TRAITS

Native Perennial Forb Native Annual Grass Native Tree Introduced Perennial Grass...

FUNCTIONAL TRAITSErosion Control (banks)Floodplain RoughnessPollinator SpeciesStructural DiversityLate Season ForageAestheticsBioengineeringSpecies Specific (trout, PMJM, bald eagle, etc.)

Berry Producing Shrubs

Scientific Name (Ackerfield, with authority)	Scientific Name (USDA)	Common Name (USDA)	Min Elev (resto)	Max Elev (resto)	Life History
Juniperus communis L. var. depressa Pursh	Juniperus communis	common juniper	6500	12000	NS
Prunus virginiana L. var. melanocarpa (A. Nels.) Sarg.	Prunus virginiana var. me	black chokecherry	4000	9000	NS
Ribes cereum Dougl.	Ribes cereum	wax currant	4300	10500	NS
Ribes inerme Rydb.	Ribes inerme	whitestem gooseberry	6900	9800	NS
Rosa woodsii L.	Rosa woodsii	Wood's rose	3700	9200	NS
Rubus deliciosus Torr.	Rubus deliciosus	delicious raspberry	5400	10000	NS
Shepherdia canadensis (L.) Nutt.	Shepherdia canadensis	russet buffaloberry	8000	10800	NS
Symphoricarpos albus (L.) Blake	Symphoricarpos albus	common snowberry	6000	8800	NS

8 (30 total)

Pollinator Species

117

Willow Species

12

K B

48

Refining Species Selection

Type of Plant Material

<u>SEED</u>

- Inexpensive per acre
- Easy way to add diversity to site
- Potential for high vegetation cover quickly

<u>CONTAINERS</u>

- Can be designed to not require irrigation (D60 deep pots)
- Higher cost per acre
- Should secure further in advance than seeds

<u>CUTTINGS</u>

- Inexpensive per unit
- Easy to acquire as ecotypic stock (local genetics)
- Irrigation typically not necessary

Expected Niche vs. Restoration Niche

Expected (i.e., fundamental) Niche

A plant's expected location on the landscape, based on natural means of recruitment (i.e., seed rain or fecal matter)

Restoration Niche

Where the plant may be located based on means of establishment (i.e., seed, container, cutting).

Influenced by risk of drought or scour.

Restoration Niche is often narrower than fundamental niche.

Riparian Hydrosere

A riparian plant community whose composition and structure is influenced primarily by hydrology, landform, and frequency of disturbance.

Pool (1914: p 189, in *Plant Succession: An Analysis of the Development of Vegetation*, Clements, Frederic. E., 1916)

Importance of Defining Hydroseres for Riparian/Wetland Restoration

Define a hydrologic point of reference appropriate for the project

Design the right community in the right place

Specify the right plants in the right place

Define Hydroseres Relative to Point of Reference

Hydrosere	Water depth relative to normal pond (ft)	Water Depth for grading surface (ft a.s.l.)	Min. Horizontal Extent of grading surface (ft)	Min slope (%)	Max Slope (%)
Open water slope to lake bottom	deeper than75	< 4973.5	various	66%	100%
Emergent Wetland	75 to +0.25	4973.5 - 4974.5	20	0.5	2
Normal Pond*	0	4,974.25	0.25	n/a	n/a
Normal Pond (Max)*		4,975.00	0.25	n/a	n/a
Mesic Wetland	+0.25 to 1.0	4,974.5 - 4,975.25	20	0.5	3
Facultative Wetland	+1.00 to 1.5	4,975.25 - 4,975.75	5	0.5	3
Hydroriparian	+1.5 to 1.75	4,975.75 to 4,976.0	1	0	33
Mesoriparian	+1.75 to 2.50	4,976.0 to 4,976.75	3	0	33
Xeroriparian	+2.5 to 3.25	4,976.75 to 4,977.5	3	0	33
Upland	> 3.5	> 4,977.5	various	0	50

Designing Without Irrigation in Mind

Hunters Overlook

- Mesoriparian shrubs locate immediately below edge of the capillary fringe.
- Xeroriparian shrubs located at or just above capillary fringe

No Need for Irrigation

Hunters Overlook

- 3 months after installation

Vegetated Soil Lifts (what hydrosere is this?)

Biologs

<u>Others:</u> Fascines, joint planting, live brush trenches, dense cuttings, sod transplants....

Questions?

john@aloterraservices.com

へ見らる

Stream Restoration Projects – The Revegetation Side of the Story

Drew Barrymore

Jenny Slate

Stream Restoration Projects – The Revegetation Side of the Story

Janelle Kreutzer

Moneka Worah

Stream Restoration Projects -*The Revegetation Side of the Story*

CASFM 2019 Jenelle Kreutzer and Moneka Worah

Topics

Ecological restoration 101

- 3 primary components
- Ecosystems in CO

Tips for revegetation success

- Project start-up
- Design
- Construction
- Post-construction/monitoring

Takeaways

Project start-up – Ecologist from project beginning to end

- Know ecological setting and existing site conditions
- Identify restoration potential
- Develop a vegetation management plan

Project start-up – Regulatory compliance

"Wetlands are areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas." - Definition of wetlands as used by the U.S. Army Corps of Engineers (Corps) and the U.S. Environmental Protection Agency (EPA) since the 1970s for regulatory purposes.

Project start-up – Identify revegetation goals and objectives

What constitutes revegetation success?

- Cover
- Composition
- Structural or plant diversity

What is the role of vegetation in the project?

- Aesthetics
- Meeting environmental permitting requirements
- Lateral migration/bank stability

Design –

- Avoid and minimize
- Use more vegetation
- Salvage material and live transplants

Design – Avoid and minimize

Design – Use more vegetation!

Design – Use more vegetation!

Design – Hydrology

Understand/define the following:

- Flow type
- Watershed Hydrologic regime
- Wetland vs Riparian
- Low-flow elevation

Design – Hydrology

Design – Soils

Understand/define the following:

- Existing soils condition/health
- Plan for soil testing
- Imported material
- Topsoil management
- What's in the top 6-12" when replaced?

Design – Soils

Design – Soils

Design – Soils

Understand/define the following:

- Existing soils condition/health
- Topsoil management
- What's in the top 6-12" when replaced?
- Plan for soil testing

Design – Plants

Understand/define the following:

- Weed management
- Elevation/landscape position
- Ordering materials
- Timing

Design – Plants Pre-Treatment of Noxious Weeds

Tips for revegetation success

Design – Plants

- Species composition and selection
- Structural Diversity

Design – Plants

- Pre-ordering material from venders
- Time of year for planting

Construction

- Ecologist for construction observation
- Phasing planting

Construction - Salvage materials and live transplants

Post construction

Supplemental watering

Noxious weed control

Post construction

- Planting as-built
- Implementing your monitoring and vegetation management plan

Takeaways

Top tips for revegetation!

- Remember the 3 components soils/hydrology/plants in your design
- Ecologist start to finish
- Balancing project goals and objectives with the permit/wetland mitigation requirements
- Avoid and minimize
- Consider soil testing during design and construction
- Remember to order plant material early on

Jenelle Kreutzer — jkreutzer@eroresources.com Moneka Worah — mworah@eroresources.com

ERO Resources Corp. — 303.830.1188 www.eroresources.com

Consultants in Natural Resources and the Environment

